已知點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為a,點(diǎn)B對應(yīng)的數(shù)為b,且|a+4|+(b-1)2=0,A、B之間的距離記作|AB|,定義:|AB|=|a-b|.
(1)求線段AB的長|AB|;
(2)設(shè)點(diǎn)P在數(shù)軸上對應(yīng)的數(shù)為x,當(dāng)|PA|-|PB|=2時(shí),求x的值;
(3)若點(diǎn)P在A的左側(cè),M、N分別是PA、PB的中點(diǎn),當(dāng)P在A的左側(cè)移動(dòng)時(shí),下列兩個(gè)結(jié)論:
①|(zhì)PM|+|PN|的值不變;②|PN|-|PM|的值不變,其中只有一個(gè)結(jié)論正確,請判斷出正確結(jié)論,并求其值.
分析:(1)根據(jù)非負(fù)數(shù)的和為0,各項(xiàng)都為0;
(2)應(yīng)考慮到A、B、P三點(diǎn)之間的位置關(guān)系的多種可能解題;
(3)利用中點(diǎn)性質(zhì)轉(zhuǎn)化線段之間的倍分關(guān)系得出.
解答:解:(1)∵|a+4|+(b-1)
2=0,
∴a=-4,b=1,
∴|AB|=|a-b|=5;
(2)當(dāng)P在點(diǎn)A左側(cè)時(shí),
|PA|-|PB|=-(|PB|-|PA|)=-|AB|=-5≠2.
當(dāng)P在點(diǎn)B右側(cè)時(shí),
|PA|-|PB|=|AB|=5≠2.
∴上述兩種情況的點(diǎn)P不存在.
當(dāng)P在A、B之間時(shí),|PA|=|x-(-4)|=x+4,|PB|=|x-1|=1-x,
∵|PA|-|PB|=2,∴x+4-(1-x)=2.
∴x=-
,即x的值為-
;
(3)|PN|-|PM|的值不變,值為
.
∵|PN|-|PM|=
|PB|-
|PA|=
(|PB|-|PA|)=
|AB|=
,
∴|PN|-|PM|=
.
點(diǎn)評:本題滲透了分類討論的思想,體現(xiàn)了思維的嚴(yán)密性,在今后解決類似的問題時(shí),要防止漏解.
利用中點(diǎn)性質(zhì)轉(zhuǎn)化線段之間的倍分關(guān)系是解題的關(guān)鍵,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時(shí),靈活運(yùn)用線段的和、差、倍、分轉(zhuǎn)化線段之間的數(shù)量關(guān)系也是十分關(guān)鍵的一點(diǎn).