【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=120°,將一個(gè)含30°的直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.(圖中∠OMN=30°,∠NOM=90°)
(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問(wèn)直線ON是否平分∠AOC?請(qǐng)說(shuō)明理由;
(2)將圖1中的三角板繞點(diǎn)O按每秒6°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,求t;
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚?/span>∠AOM與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)直線ON平分∠AOC,理由詳見(jiàn)解析;(2)t=10或t=40;(3)∠AOM–∠NOC=30°.
【解析】
(1)由角的平分線的定義和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,則∠AON=30°或∠NOR=30°,即順時(shí)針旋轉(zhuǎn)300°或120°時(shí)ON平分∠AOC,據(jù)此求解;
(3)因?yàn)椤?/span>MON=90°,∠AOC=60°,所以∠AOM=90°-∠AON、∠NOC=60°-∠AON,然后作差即可.
解:(1)直線ON平分∠AOC;
理由:
設(shè)ON的反向延長(zhǎng)線為OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB=60°,
又∵OM⊥ON,
∴∠MON=90°,
∴∠BON=30°,
∴∠CON=120°+30°=150°,
∴∠COD=30°,
∴OD平分∠AOC,
即直線ON平分∠AOC;
(2)由(1)可知∠BON=30°,∠DON=180°,
因此ON旋轉(zhuǎn)60°或240°時(shí)直線ON平分∠AOC,
由題意得,6t=60°或240°,
∴t=10或40;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2018的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開(kāi)后折痕DE分別交AB、AC于點(diǎn)E、G,連結(jié)GF,給出下列結(jié)論:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,則正方形ABCD的面積是6+4 ,其中正確的結(jié)論個(gè)數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AB延長(zhǎng)線上一點(diǎn),D為線段BC上一點(diǎn),CD=2BD,E為線段AC上一點(diǎn),CE=2AE
(1)若AB=18,BC=21,求DE的長(zhǎng);
(2)若AB=a,求DE的長(zhǎng);(用含a的代數(shù)式表示)
(3)若圖中所有線段的長(zhǎng)度之和是線段AD長(zhǎng)度的7倍,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個(gè)行程中,龍舟離開(kāi)起點(diǎn)的距離y(米)與時(shí)間x(分鐘)的對(duì)應(yīng)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?
(2)哪支龍舟隊(duì)先出發(fā)?哪支龍舟隊(duì)先到達(dá)終點(diǎn)?
(3)分別求甲、乙兩支龍舟隊(duì)的y與x函數(shù)關(guān)系式;
(4)甲龍舟隊(duì)出發(fā)多長(zhǎng)時(shí)間時(shí)兩支龍舟隊(duì)相距200米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表為某個(gè)雨季水庫(kù)管理員記錄的水庫(kù)一周內(nèi)的水位變化情況,警戒水位為150m(上周末的水位剛好達(dá)到警戒水位).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
增減/m | +1.2 | +0.4 | +0.8 | ﹣0.1 | +0.7 | ﹣0.7 | ﹣1.1 |
注:正數(shù)表示比前一天水位上升,負(fù)數(shù)表示比前一天水位下降.
(1)本周哪一天水位最高?有多少米?
(2)本周哪一天水位最低?有多少米?
(3)根據(jù)給出的數(shù)據(jù),以警戒水位為0點(diǎn),用折線統(tǒng)計(jì)圖表示本周內(nèi)該水庫(kù)的水位情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過(guò)點(diǎn)( ,﹣ ),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC﹣PD|的最大值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com