【題目】如圖,某興趣小組用無人機進(jìn)行航拍測高,無人機從1號樓和2號樓的地面正中間B點垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____米(結(jié)果保留根號).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是平行四邊形,A、C兩點的坐標(biāo)分別為(4,0),(-2,3),拋物線W經(jīng)過O、A、C三點,D是拋物線W的頂點.
(1)求拋物線W的解析式及頂點D的坐標(biāo);
(2)將拋物線W和OABC一起先向右平移4個單位后,再向下平移m(0<m<3)個單位,得到拋物線W′和O′A′B′C′,在向下平移的過程中,設(shè)O′A′B′C′與OABC的重疊部分的面積為S,試探究:當(dāng)m為何值時S有最大值,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取最大值時,設(shè)此時拋物線W′的頂點為F,若點M是x軸上的動點,點N是拋物線W′上的動點,試判斷是否存在這樣的點M和點N,使得以D、F、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù) (k ≠ 0) 在第一象限內(nèi)的圖象交于點A(1,m).
(1) 求反比例函數(shù)的表達(dá)式;
(2) 點B在反比例函數(shù)的圖象上, 且點B的橫坐標(biāo)為2. 若在x軸上存在一點M,使MA+MB的值最小,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,D是半圓O上一點,C是的中點,連結(jié)AC交BD于點E,連結(jié)AD,若BE=4DE,CE=6,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,頂點為的拋物線:()經(jīng)過點和軸上的點,,.
(1)求該拋物線的表達(dá)式;
(2)聯(lián)結(jié),求;
(3)將拋物線向上平移得到拋物線,拋物線與軸分別交于點(點在點的左側(cè)),如果與相似,求所有符合條件的拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個頂點分別在⊙O及半徑OM、OP上,并且∠POM=45°,求正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李輝到服裝專賣店去做社會調(diào)查,了解到商店為了激勵營業(yè)員的工作積極性實行了“月總收入=基本工資+計件獎金”的方法,并獲得了如下信息:
營業(yè)員 | 嘉琪 | 嘉善 |
月銷售件數(shù)/件 | 400 | 300 |
月總收入/元 | 7800 | 6600 |
假設(shè)月銷售件數(shù)為x件,月總收入為y元,銷售每件獎勵a元,營業(yè)員月基本工資為b元.
(1)求a、b的值.
(2)若營業(yè)員嘉善某月總收入不低于4200元,那么嘉善當(dāng)月至少要賣多少件衣服?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,函數(shù)與y2=x+b交與點A、B兩點,其中點A的縱坐標(biāo)是3,則滿足y2>y1的x的取值范圍是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com