【題目】小明準(zhǔn)備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),作為要制作的風(fēng)箏的一個翅膀,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結(jié)果精確到0.1cm)(參考數(shù)據(jù):sin60°=0.87,cos60°=0.50,tan60°=1.73)

【答案】12.5

【解析】

在直角三角形中用三角函數(shù)求出FD、BE的長,再根據(jù)FC=AE=AB+BE,CD=FC-FD,繼而可求得答案.

由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,

∴∠BCE=30°,tan30°=,

∴BE=ECtan30°=51×=17(cm);

∴CF=AE=34+BE=(34+17)cm,

Rt△AFD中,∠FAD=45°,

∴∠FDA=45°,

∴DF=AF=EC=51cm,

CD=FC﹣FD=34+17﹣51=17﹣17≈12.5(cm),

答:CD的長度為12.5cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與軸、軸分別交于、兩點,是坐標(biāo)原點.

1)求交點的坐標(biāo),并畫出該一次函數(shù)的圖象;

2)求的面積;

3)根據(jù)圖象直接寫出:當(dāng)時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ACBC,垂足為C,AC=4,BC=3,將線段AC繞點A按逆時針方向旋轉(zhuǎn)60°,得到線段AD,連接DCDB

(1)求線段CD的長;

(2)求線段DB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車產(chǎn)業(yè)的發(fā)展,有效促進我國現(xiàn)代化建設(shè).某汽車銷售公司2015年盈利1500萬元,到2017年盈利2160萬元,且從2015年到2017年,每年盈利的年增長率相同.

(1)求平均年增長率?

(2)若該公司盈利的年增長率繼續(xù)保持不變,預(yù)計2018年盈利多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC和A′B′C是兩個完全重合的直角三角板,B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉(zhuǎn),當(dāng)點A′落在AB邊上時,CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形的直角頂點在坐標(biāo)原點,OAB=30°,若點A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點B的反比例函數(shù)解析式為(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是射線yx≥0)上一點,過點AABx軸于點B,以AB為邊在其右側(cè)作正方形ABCD,過點A的雙曲線yCD邊于點E,則的值為(  )

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B.

(1)直接寫出拋物線L的解析式;

(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N.若BMN的面積等于1,求k的值;

(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1y軸交于點C,過點Cy軸的垂線交拋物線L1于另一點D.F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若PCDPOF相似,并且符合條件的點P恰有2個,求m的值及相應(yīng)點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案