【題目】已知:如圖,已知∠1+2=180°,∠3=B 求證:∠AED=∠ACB

證明:∵∠1+∠4180°(平角定義)

∠1+∠2180°(已知)

∴_____________

∴∠3+ =180°

3=B(已知)

+ =180°(等量代換)

AED=∠ACB ).

【答案】4=2,同角的補角相等;BDEF,內錯角相等,兩直線平行;∠BDE ,兩直線平行,同旁內角互補;∠B+BDE=180°DEBC,同旁內角互補,兩直線平行;兩直線平行,同位角相等.

【解析】

根據平角的定義及已知,利用同角的補角相等得到∠4=2,根據內錯角相等,兩直線平行得到BDEF,根據兩直線平行,同旁內角互補得到∠3+BDE=180°,等量代換得到∠B+BDE=180°,根據同旁內角互補,兩直線平行得到DEBC,最后根據兩直線平行,同位角相等得出結論.

∵∠1+4180°(平角定義)

1+2180°(已知)

4=2 同角的補角相等

BD EF 內錯角相等,兩直線平行

∴∠3+ BDE =180° 兩直線平行,同旁內角互補

又∵∠3=B(已知)

B + BDE =180°(等量代換)

DE BC 同旁內角互補,兩直線平行

∴∠AED=∠ACB 兩直線平行,同位角相等 ).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮玩一個游戲:取三張大小、質地都相同的卡片,上面分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.
(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)如果和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.你認為這個游戲規(guī)則對雙方公平嗎?做出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)已知a+b=﹣,求代數(shù)式(a12+b2a+b+2a的值.

2)已知a,b,c是三角形的三邊,且a2+b2+c2abbcac0.求證:此三角形是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知ABCD,點E、F分別是AB、CD上的點,點P是兩平行線之間的一點,設∠AEP=α,∠PFC=β,在圖①中,過點E作射線EHCD于點N,作射線FI,延長PFG,使得PE、FG分別平分∠AEH、∠DFI,得到圖②.

1)在圖①中,當α=20°,β=50°時,求∠EPF的度數(shù);

2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);

3)在圖②中,當FIEH時,請求出αβ的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期三個月的跟蹤調查,并將調查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:

(1)本次調查中,張老師一共調查了 名同學,其中C類女生有 名,D類男生有 名;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)為了共同進步,張老師想從被調查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.

(1)如圖1,若點A、C、E在一條直線上時,我們可以得到結論:線段AD與BE的數(shù)量關系為: ,
線段AD與BE所成的銳角度數(shù)為°;
(2)如圖2,當點A、C、E不在一條直線上時,請證明(1)中的結論仍然成立;
靈活運用:
如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,是一個長為 2m,寬為 2n 的長方形,沿圖中虛線用剪刀將其均分成四個完全相同的小長方形,然后按圖 2 的形狀拼圖.

(1) 2 中的圖形陰影部分的邊長為 ;(用含 m、n 的代數(shù)式表示)

(2)請你用兩種不同的方法分別求圖 2 中陰影部分的面積; 方法一: ;方法二:

(3)觀察圖 2,請寫出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關系式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[感知]

如圖①,△ABC是等邊三角形,D是邊BC上一點(點D不與點B、C重合),作∠EDF=60°,使角的兩邊分別交邊AB、AC于點E、F,且BD=CF.若DEBC,則∠DFC的大小是   度;

[探究]

如圖②,△ABC是等邊三角形,D是邊BC上一點(點D不與點B、C重合),作∠EDF=60°,使角的兩邊分別交邊AB、AC于點E、F,且BD=CF.求證:BE=CD;

[應用]

在圖③中,若D是邊BC的中點,且AB=2,其它條件不變,如圖③所示,則四邊形AEDF的周長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABO的頂點A是雙曲線y= 與直線y=﹣x﹣(k+1)在第二象限的交點.AB⊥x軸于B,且SABO=

(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.

查看答案和解析>>

同步練習冊答案