【題目】如圖1,在長方形ABCD中,點P是CD中點,點Q從點A開始,沿著A→B→C→P的路線勻速運動,設△APQ的面積是y,點Q經過的路線長度為x,圖2坐標系中折線OEFG表示y與x之間的函數關系,點E的坐標為(4,6),則點G的坐標是_____.
科目:初中數學 來源: 題型:
【題目】如圖,已知數軸上點A表示的數為10,點B在點A左邊,且AB=18.動點P從點A出發(fā),以每秒5個單位長度的速度沿數軸向左勻速運動,設運動時間為t(t>0)秒.
(1)寫出數軸上點B表示的數,點P表示的數(用含t的代數式表示);
(2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數軸向左勻速運動,若點P、Q同時出發(fā).
①問點P運動多少秒時追上點Q?
②問點P運動多少秒時與點Q相距4個單位長度?并求出此時點P表示的數;
(3)若點P、Q以(2)中的速度同時分別從點A、B向右運動,同時點R從原點O以每秒7個單位的速度向右運動,是否存在常數m,使得2QR+3OP﹣mOR為定值,若存在請求出m值以及這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,則所有正方形的面積的和是( )cm2
A. 28 B. 49 C. 98 D. 147
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩地相距20千米,甲、乙兩人都從A地去B地,圖中射線l1和l2分別表示甲、乙兩人所走路程s(千米)與時間t(小時)之間的關系.
下列說法:
①乙晚出發(fā)1小時;
②乙出發(fā)3小時后追上甲;
③甲的速度是4千米/小時,乙的速度是6千米/小時;
④乙先到達B地.其中正確的個數是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以線段AC的兩個端點A,C為圓心,大于AC的長為半徑畫弧,兩弧相交于B,D兩點,連接BD,AB,BC,CD,DA,以下結論:
①BD垂直平分AC;
②AC平分∠BAD;
③AC=BD;
④四邊形ABCD是中心對稱圖形.
其中正確的有( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點M是線段AB中點,AD、BC交于點N,連接AC、BD、MC、MD,∠l=∠2,∠3=∠4.
(1)求證:△AMD≌△BMC;
(2)圖中在不添加新的字母的情況下,請寫出除了“△AMD≌△BMC”以外的所有全等三角形,并選出其中一對進行證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AOB是一條直線,∠AOC=60°,OD,OE分別是∠AOC和∠BOC的平分線,則圖中互補的角有( 。
A. 5對 B. 6對 C. 7對 D. 8對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A,B在數軸上對應的實數分別是a,b,其中a,b滿足|a﹣2|+(b+1)2=0.
(1)求線段AB的長;
(2)點C在數軸上對應的數為x,且x是方程x﹣1=x+1的解,在數軸上是否存在點P,使PA+PB=PC,若存在,求出點P對應的數;若不存在,說明理由;
(3)在(1)和(2)的條件下,點A,B,C同時開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,點B和點C分別以每秒4個單位長度和9個單位長度的速度向右運動,點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,設運動時間為t秒,試探究:隨著時間t的變化,AB與BC滿足怎樣的數量關系?請寫出相應的等式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校實施課程改革,為初三學生設置了A,B,C,D,E,F共六門不同的拓展性課程,現隨機抽取若干學生進行了“我最想選的一門課”調查,并將調查結果繪制成如圖統(tǒng)計圖表(不完整)
選修課 | A | B | C | D | E | F |
人數 | 20 | 30 |
根據圖標提供的信息,下列結論錯誤的是( )
A.這次被調查的學生人數為200人
B.扇形統(tǒng)計圖中E部分扇形的圓心角為72°
C.被調查的學生中最想選F的人數為35人
D.被調查的學生中最想選D的有55人
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com