【題目】如圖,在平面直角坐標系xOy中,已知直線l:y=﹣x﹣1,雙曲線y=,在l上取一點A1,過A1作x軸的垂線交雙曲線于點B1,過B1作y軸的垂線交l于點A2,請繼續(xù)操作并探究:過A2作x軸的垂線交雙曲線于點B2,過B2作y軸的垂線交l于點A3,…,這樣依次得到l上的點A1,A2,A3,…,An,…記點An的橫坐標為an,若a1=2,則a2018=_____;若要將上述操作無限次地進行下去,則a1不可能取的值是_____.
【答案】﹣; 0、﹣1
【解析】
求出a2,a3,a4,a5的值,可發(fā)現(xiàn)規(guī)律,繼而得出a2013的值,根據(jù)題意可得A1不能在x軸上,也不能在y軸上,從而可得出a1不可能取的值.
解:當a1=2時,B1的縱坐標為,
B1的縱坐標和A2的縱坐標相同,則A2的橫坐標為a2=﹣,
A2的橫坐標和B2的橫坐標相同,則B2的縱坐標為b2=﹣,
B2的縱坐標和A3的縱坐標相同,則A3的橫坐標為a3=﹣,
A3的橫坐標和B3的橫坐標相同,則B3的縱坐標為b3=﹣3,
B3的縱坐標和A4的縱坐標相同,則A4的橫坐標為a4=2,
A4的橫坐標和B4的橫坐標相同,則B4的縱坐標為b4=,
即當a1=2時,a2=﹣,a3=﹣,a4=2,a5=﹣,
b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,
∵=672…2,
∴a2018=a2=﹣;
點A1不能在y軸上(此時找不到B1),即x≠0,
點A1不能在x軸上(此時A2,在y軸上,找不到B2),即y=﹣x﹣1≠0,
解得:x≠﹣1;
綜上可得a1不可取0、﹣1.
故答案為:﹣;0、﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(點A在點B的左側).
(1)求拋物線的對稱軸及線段AB的長;
(2)拋物線的頂點為P,若∠APB=120°,求頂點P的坐標及a的值;
(3)若在拋物線上存在一點N,使得∠ANB=90°,結合圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,直線y=mx與雙曲線相交于A(﹣1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.
(1)求m、n的值;
(2)求直線AC的解析式.
(3)點P在雙曲線上,且△POC的面積等于△ABC面積的,求點P的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在邊AB上,以點A為圓心,線段AD的長為半徑的⊙A與邊AC相交于點E,AF⊥DE,垂足為點F,AF的延長線與邊BC相交于點G,聯(lián)結GE.已知DE=10,cos∠BAG=,.求:
(1)⊙A的半徑AD的長;
(2)∠EGC的余切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD交于O,EF過點O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是所對弦上一動點,點在的延長線上,過點作交于點,連接,已知,,設,兩點間的距離為,的面積為.(當點與點,重合時,的值為0.)
小亮根據(jù)學習函數(shù)的經驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.
下面是小亮的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 4.47 | 7.07 | 9.00 | 8.94 | 0 |
(2)在平面直角坐標系中,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象,解決問題:當的面積為時,的長度約為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.
(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;
(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;
(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣12的圖象交x軸于A(﹣3,0),B(5,0)兩點,與y軸交于點C.點D是拋物線上的一個動點.
(1)求拋物線的解析式;
(2)設點D的橫坐標為m,并且當m≤x≤m+5時,對應的函數(shù)值y滿足﹣m,求m的值;
(3)若點D在第四象限內,過點D作DE∥y軸交BC于E,DF⊥BC于F.線段EF的長度是否存在最大值?若存在,請求出這個最大值及相應點D的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com