【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結(jié)論有_______個.
【答案】4.
【解析】
試題解析:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正確;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正確;
在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°-∠ABD,∴③正確;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°-∠ABC,
∴∠ADB不等于∠CDB,∴④錯誤;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤正確;
即正確的有4個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中點.點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒2個單位長度的速度從點C出發(fā),沿CB向點B運動.點P停止運動時,點Q也隨之停止運動.當(dāng)運動時間為 秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為判斷某運動員的成績是否穩(wěn)定,教練要對他10 次訓(xùn)練的成績進(jìn)行統(tǒng)計分析,則教練需了10 次成績的
A. 眾數(shù) B. 方差 C. 平均數(shù) D. 頻數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校車每月的支出費用為7200元,票價為3元/人,設(shè)每月有x人乘坐該校車,每月的收入與支出的差額為y元,請寫出y與x之間的表達(dá)式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,E、F分別是BC、AC的中點,延長BA到點D,使2AD=AB.連接DE,DF.
(1)求證:AF與DE互相平分;
(2)若BC=4,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 四個角相等的四邊形是正方形 B. 對角線相等的四邊形是平行四邊形
C. 矩形的對角線一定互相垂直 D. 四條邊相等的四邊形是菱形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com