(2000•海南)如圖,直線1與11,12相交,形成∠1,∠2,…,∠8,
請?zhí)钌夏阏J為適合的一個條件:    使得11∥12
【答案】分析:正確識別“三線八角”中的同位角、內錯角、同旁內角是正確答題的關鍵,不能遇到相等或互補關系的角就誤認為具有平行關系,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行.
解答:解:∵直線1與11,12相交,形成∠1,∠2,…,∠8,
∴∠1=∠5,即可使得11∥12
任寫任何一對同位角或內錯角相等,一組同旁內角或同旁外角互補.
點評:解答此類要判定兩直線平行的題,可圍繞截線找同位角、內錯角和同旁內角.本題是一道探索性條件開放性題目,能有效地培養(yǎng)“執(zhí)果索圖”的思維方式與能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圖形認識初步》(01)(解析版) 題型:解答題

(2000•海南)如圖所示,在平面直角坐標系中,第一象限的角平分線OM與反比例函數(shù)的圖象相交于點M,已知OM的長是2
(1)求點M的坐標;
(2)求此反比例函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:解答題

(2000•海南)如圖所示,在平面直角坐標系中,第一象限的角平分線OM與反比例函數(shù)的圖象相交于點M,已知OM的長是2
(1)求點M的坐標;
(2)求此反比例函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年海南省中考數(shù)學試卷(解析版) 題型:解答題

(2000•海南)如圖所示,在平面直角坐標系中,第一象限的角平分線OM與反比例函數(shù)的圖象相交于點M,已知OM的長是2
(1)求點M的坐標;
(2)求此反比例函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:解答題

(2000•海南)如圖,CB是半圓的直徑,AC與半圓相切于C點,AB與半圓相交于D點,在AC上任取一點E,連接BE交半圓于F點.求證:AB•BD=EB•BF.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《三角形》(01)(解析版) 題型:選擇題

(2000•海南)如圖,E為矩形ABCD的邊CD上的一點,AB=AE=4,BC=2,則∠BEC是( )

A.15度
B.30度
C.60度
D.75度

查看答案和解析>>

同步練習冊答案