【題目】如圖,內(nèi)一點(diǎn),過點(diǎn)分別作的平行線,交的四邊于、、、四點(diǎn),若面積為6,面積為4,則的面積為(  )

A.B.C.1D.2

【答案】C

【解析】

根據(jù)平行四邊形的性質(zhì)得到四個(gè)平行四邊形,且SAEP=SAGP,SPHC=SPFCSABC= SADC,

利用面積比較的關(guān)系即可求出答案.

由題意知:四邊形BHPE、四邊形AEPG、四邊形HCFP、四邊形GPFD均為平行四邊形,

SAEP=SAGPSPHC=SPFC,SABC= SADC

SABC=SAEP+S四邊形BHPE+SPHC-SAPC①,

SADC=SAGP+S四邊形GPFD+SPFC+SAPC②,
-①得,0=S四邊形BHPE-S四邊形GPFD+2SAPC

2SAPC=6-4=2,

SAPC=1.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,已知,,D,,,如何求AD的長呢?

心怡同學(xué)靈活運(yùn)用對稱知識,將圖形進(jìn)行翻折變換,巧妙地解答了此題,

請按照她的思路,探究并解答下列問題:

1)分別以ABAC為對稱軸,畫出、的軸對稱圖形,D點(diǎn)的對稱點(diǎn)為E、F,延長EB、FC相交于G點(diǎn),試證明四邊形AEGF是正方形;

2)設(shè),利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點(diǎn),已知直線軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,如圖①.

1)點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________,直線的解析式為________

2)點(diǎn)軸上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),過點(diǎn)軸的垂線,交直線于點(diǎn).交直線于點(diǎn)(圖②).

①如圖②,當(dāng)點(diǎn)軸的正半軸上時(shí),若的面積為,求點(diǎn)的坐標(biāo);

②連接,若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,∠ABC=60°,BC=8,點(diǎn) D BC 邊的中點(diǎn),點(diǎn) E 是邊 AC上一點(diǎn),過點(diǎn) D ED 的垂線交邊 AC 于點(diǎn) F,若 AC=7CF,且 DE 恰好平分△ABC 的周長,則△ABC 的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小紅用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cmBC10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設(shè)他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的函數(shù)圖象如圖.

1A地與B地相距______km,甲的速度為______km/分;

2)求甲、乙兩人相遇時(shí),乙行駛的路程;

3)當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需多少分鐘到達(dá)終點(diǎn)B?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)滿足時(shí),兩個(gè)函數(shù)的圖象存在個(gè)公共點(diǎn),則滿足的條件是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案