如圖,已知在平面直角坐標(biāo)系中,四邊形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,動點(diǎn)P從點(diǎn)O以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動,動點(diǎn)Q也同時(shí)從點(diǎn)B沿B→C→O的線路以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動,當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P,Q運(yùn)動的時(shí)間為t(秒).
(1)求點(diǎn)C的坐標(biāo)及梯形ABCO的面積;
(2)當(dāng)點(diǎn)Q在CO邊上運(yùn)動時(shí),求△OPQ的面積S與運(yùn)動時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)以O(shè),P,Q為頂點(diǎn)的三角形能構(gòu)成直角三角形嗎?若能,請求出t的值;若不能,請說明理由.
(1) (2)() (3)當(dāng)t=1或t=2時(shí),△OPQ為直角三角形
解析試題分析:(1)作CM⊥OA于點(diǎn)M,知CM,由∠AOC=60°易求BM=1,求出C點(diǎn)坐標(biāo);由B點(diǎn)坐標(biāo)可求BC的長,從而梯形面積可求;
(2)用含有t的代數(shù)式分別表示△OPQ的高和底,求出△OPQ的的面積即可表示出S與運(yùn)動時(shí)間t的函數(shù)關(guān)系式;
(3)分點(diǎn)Q分別在邊BC、OC、OA上運(yùn)動時(shí)進(jìn)行討論,即可求出t的值.
試題解析:(1)作CM⊥OA于點(diǎn)M,
∵∠AOC=60°,∴∠OCM=30°,
∵B(3,),BC∥AO,∴CM,
設(shè)OM=,則OC=,∴
解得,∴OM=1,OC=2,
∴C(1,),
∵B(3,),∴BC=2,
∵A(6,0),∴OA=6,
∴,
(2)如圖1,當(dāng)動點(diǎn)Q運(yùn)動到OC邊時(shí),OQ=,
作QG⊥OP,∴∠OQG=30°,
∴,∴,
又∵OP=2t,
∴
();
(3)根據(jù)題意得出:,
當(dāng)時(shí),Q在BC邊上運(yùn)動,延長BC交y軸于點(diǎn)D,
此時(shí)OP=2t,,,
∵∠POQ<∠POC=60°,
∴若△OPQ為直角三角形,只能是∠OPQ=90°或∠OQP=90°,
若∠OPQ=90°,如圖2,則∠PQD=90°,
∴四邊形PQDO為矩形,
∴OP=QD,∴2t=3-t,
解得t=1,
若∠OQP=90°,如圖3,則OQ2+PQ2=PO2,
即,
解得:t1=t2=2,
當(dāng)時(shí),Q在OC邊上運(yùn)動,
若∠OQP=90°,
∵∠POQ=60°,∴∠OPQ=30°,
∴,
若∠OPQ=90°,同理:,
而此時(shí)OP=2t>4,OQ<OC=2,
∴,,
故當(dāng)Q在OC邊上運(yùn)動時(shí),△OPQ不可能為直角三角形,
綜上所述,當(dāng)t=1或t=2時(shí),△OPQ為直角三角形。
考點(diǎn): 1.二次函數(shù);2.直角三角形的判定.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知正方形ABCD的邊長為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明AE=EF,請敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(不與點(diǎn)B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動到某處時(shí),點(diǎn)F恰好落在拋物線y=-x2+x+1上,求此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對稱軸向下以每秒1個(gè)單位長度的速度勻速運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個(gè)月可賣出200件;如果每件商品的售價(jià)每上漲1元.則每個(gè)月少賣10件。設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤為y元.
(1) 求y與x的函數(shù)關(guān)系式
(2) 每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?
(3) 若每個(gè)月的利潤不低于2160元,售價(jià)應(yīng)在什么范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=x2-1與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)過點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點(diǎn)M,過M作MG軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與PCA相似.若存在,請求出M點(diǎn)的坐標(biāo);否則,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm,點(diǎn)P從O點(diǎn)開始沿OA邊向點(diǎn)A以1cm/s的速度移動:點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O以1cm/s的速度移動,如果P、Q同時(shí)出發(fā),用t(s)表示移動的時(shí)間(),那么:
(1)設(shè)△POQ的面積為,求關(guān)于的函數(shù)解析式。
(2)當(dāng)△POQ的面積最大時(shí),△ POQ沿直線PQ翻折后得到△PCQ,試判斷點(diǎn)C是否落在直線AB上,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左則,B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,―3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動點(diǎn)。
⑴求這個(gè)二次函數(shù)的表達(dá)式;
⑵連結(jié)PO、PC,在同一平面內(nèi)把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由;
⑶當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某跳水運(yùn)動員進(jìn)行10m跳臺跳水的訓(xùn)練時(shí),身體(看成一點(diǎn))在空中的運(yùn)動路線是如圖所示坐標(biāo)系下經(jīng)過原點(diǎn)O的一條拋物線(圖中標(biāo)出的數(shù)據(jù)為己知條件).在跳某個(gè)規(guī)定動作時(shí),正確情況下,該運(yùn)動員在空中的最高處距水面m,入水處與池邊的距離為4m, 同時(shí),運(yùn)動員在距水面高度為5m以前,必須完成規(guī)定的翻騰動作,并調(diào)整好入水姿勢,否則就會出現(xiàn)失誤.
(l)求這條拋物線的解析式;
(2)在某次試跳中,測得運(yùn)動員在空中的運(yùn)動路線是(1)中的拋物線,且運(yùn)動員在空中調(diào)整好入水姿勢時(shí),距池邊的水平距離為,問:此次跳水會不會失誤?通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線過x軸上兩點(diǎn)A(9,0),C(-3,0),且與y軸交于點(diǎn)B(0,-12).
(1)求拋物線的解析式;
(2)若動點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位沿射線AC方向運(yùn)動;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位沿射線BA方向運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.問當(dāng)t為何值時(shí),△APQ∽△AOB?
(3)若M為線段AB上一個(gè)動點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
①是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點(diǎn)M運(yùn)動到何處時(shí),四邊形CBNA的面積最大?求出此時(shí)點(diǎn)M的坐標(biāo)及四邊形CBNA面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com