【題目】如圖,拋物線軸的一個交點為,與軸的交點在點與點之間(包含端點),頂點的坐標(biāo)為。則下列結(jié)論:①;②;③對于任意實數(shù),總成立;④關(guān)于的方程沒有實數(shù)根。其中結(jié)論正確的個數(shù)為()

A.B.C.D.

【答案】B

【解析】

利用拋物線的對稱軸方程得到b=-2a,再利用x=-1時,a-b+c=0,則3a+c=0,于是可對①進(jìn)行判斷;由于-3≤c≤-2c=-3a,所以-3≤-3a≤-2,解不等式組可對②進(jìn)行判斷;利用x=1時,二次函數(shù)有最小值n,則可對③進(jìn)行判斷;利用直線y=ny=ax2+bx+c只有一個公共點,則直線y=n+1y=ax2+bx+c有兩個公共點,于是可對④進(jìn)行判斷.

拋物線的對稱軸為直線x=-=1

∴b=-2a,

∵x=-1時,y=0,

a-b+c=0

∴a+2a+c=0,即3a+c=0,所以正確;

拋物線與y軸的交點B在點(0,-2)與點(0-3)之間(包含端點),

∴-3≤c≤-2,

c=-3a,

∴-3≤-3a≤-2

≤a≤1,所以錯誤;

頂點D的坐標(biāo)為(1,n).拋物線開口向上,

∴x=1時,二次函數(shù)有最小值n

∴a+b+c≤am2+bm+c,

即對于任意實數(shù)m,a+b≤am2+bm總成立,所以正確;

頂點D的坐標(biāo)為(1,n).

直線y=ny=ax2+bx+c只有一個公共點,

直線y=n+1y=ax2+bx+c有兩個公共點,

即關(guān)于x的方程ax2+bx+c=n+1有兩個實數(shù)根,所以錯誤.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別繪制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績(環(huán))

中位數(shù)(環(huán))

眾數(shù)(環(huán))

方差

a

7

7

1.2

7

b

8

c

(1)寫出表格中a,b,c的值;

(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊成績,若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=ADC=90°,AB=AD=2,CD=,點P在四邊形ABCD的邊上.若PBD的距離為,則點P的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校對A《唐詩》、B《宋詞》、C《蒙山童韻》、D其它,這四類著作開展最受歡迎的傳統(tǒng)文化著作調(diào)查,隨機調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四類著作中的一種)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

1)求一共調(diào)查了多少名學(xué)生;

2)請將條形統(tǒng)計圖補充完整;

3)該校語文老師想從這四類著作中隨機選取兩類作為學(xué)生寒假必讀書籍,請用樹狀圖或列表的方法求恰好選中《宋詞》和《蒙山童韻》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,連結(jié)AC,現(xiàn)有一寬度為1,且長與y軸平行的矩形沿x軸方向平移,交直線AC于點DE,△ODE周長的最小值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,的直徑,、上的點,連接、、,的切線,過點.

1)如圖1,求證:;

2)如圖2,若,連接,延長,連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,馬路的兩邊CF、DE互相平行,線段CD為人行橫道,馬路兩側(cè)的A、B兩點分別表示車站和超市,CDAB所在直線互相平行,且都與馬路的兩邊垂直.馬路寬20米,A,B相距62米,∠A=67°,B=37°.求CDAB之間的距離.(參考數(shù)據(jù):sin67°,cos67°,tan67°,sn37°,cos37°,tan37°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程ax2bxc0的兩實數(shù)根為x1,x2,根據(jù)一元二次方程解的意義和因式分解法解一元二次方程可知,x1,x2也是(xx1)(xx2)=0的兩個實數(shù)根,所以ax2bxcaxx1)(xx2).

利用這個結(jié)論可以解決一些相關(guān)問題.

 。1)實數(shù)范圍內(nèi)因式分解:

例:分解因式2x22x1

解:令2x22x10,解這個方程,得

.

x1,x2.

所以 2x22x1

試仿照上例在實數(shù)范圍內(nèi)分解因式:x26x1;

2)解不等式:x22x10

3)靈活運用:

已知方程(xa)(xb)﹣x0的兩個實數(shù)根是c、d,求方程(2xc)(2xd)+2x0的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春暖花開,樹木萌芽,某種時令蔬菜的價格呈上升趨勢,若這種蔬菜開始時的售價為每斤20元,并且每天漲價2元,從第六天開始,保持每斤30元的穩(wěn)定價格銷售,直到11天結(jié)束,該蔬菜退市.

1)請寫出該種蔬菜銷售價格y與天數(shù)x之間的函數(shù)關(guān)系式;

2)若該種蔬菜于進(jìn)貨當(dāng)天售完,且這種蔬菜每斤進(jìn)價z與天數(shù)x的關(guān)系為z=﹣+121x11),且x為整數(shù),那么該種蔬菜在第幾天售出后,每斤獲得利潤最大?最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案