已知菱形的周長等于40cm,兩對角線的比為3:4,則對角線的長分別是(  )
A.12cm,16cmB.6cm,8cmC.3cm,4cmD.24cm,32cm
菱形的周長為40cm,則菱形的邊長為10cm,
菱形的對角線互相垂直,所以△ABO為直角三角形,
設(shè)菱形的對角線長為2x、2y,則x:y=3:4,
在Rt△ABO中,x2+y2=102
解得x=6cm,y=8cm,
故對角線長為12cm,16cm.
故選A.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AO=CO,BO=DO,在不添加任何輔助線的前提下,要想該四邊形成為矩形,只需再加上一個條件是______(填上你認為正確的一個答案即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在矩形ABCD中,AC是對角線.點P為矩形外一點且滿足AP=PC,AP⊥PC.PC交AD于點N,連接DP,過點P作PM⊥PD交AD于M.
(1)若AP=
5
,AB=
1
3
BC,求矩形ABCD的面積;
(2)若CD=PM,求證:AC=AP+PN.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下面的結(jié)論:
①△ODC是等邊三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,
其中正確結(jié)論有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等邊三角形ABC中,BC=6cm.射線AGBC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設(shè)運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;
(2)填空:
①當t為______s時,四邊形ACFE是菱形;
②當t為______s時,以A、F、C、E為頂點的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形花壇ABCD的邊長為20m,∠ABC=60°,沿著該菱形的對角線修建兩條小路AC和BD,則較長的小路長約為______m.(精確到0.01m)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,四邊形ABCD是由四個邊長為l的正六邊形所圍住,則四邊形ABCD的面積是( 。
A.
3
4
B.
3
2
C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,CD是Rt△ABC斜邊AB上的高,AF為角平分線,AF交BC于F,交CD于E,過E作EGAB,與BC交于G,過F向AB作垂線,垂足為H.
求證:(1)CF=BG;
(2)四邊形CEHF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,點O是邊AC上一個動點,過O作直線MNBC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)探究:線段OE與OF的數(shù)量關(guān)系并加以證明;
(2)當點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?
(3)當點O在邊AC上運動時,四邊形BCFE會是菱形嗎?若是,請證明,若不是,則說明理由.

查看答案和解析>>

同步練習冊答案