二次函數(shù)y=ax²-6ax+c(a>0)的圖像拋物線過點(diǎn)C(0,4),設(shè)拋物線的頂點(diǎn)為D。

(1)若拋物線經(jīng)過點(diǎn)(1,-6),求二次函數(shù)的解析式;

(2)若a=1時(shí),試判斷拋物線與x軸交點(diǎn)的個(gè)數(shù);

(3)如圖所示A、B是⊙P上兩點(diǎn),AB=8,AP=5。且拋物線過點(diǎn)A(x1,y1),B(x2,y2),并有AD=BD。設(shè)⊙P上一動(dòng)點(diǎn)E(不與A、B重合),且∠AEB為銳角,若<a≤1時(shí),請(qǐng)判斷∠AEB與∠ADB的大小關(guān)系,并說明理由。

 

【答案】

(1) ;(2)當(dāng)0<a<0.5時(shí),∠AEB <∠ADB ;當(dāng)a=0.5時(shí),∠AEB =∠ADB ;當(dāng)0.5<a≤1時(shí),∠AEB >∠ADB.

【解析】

試題分析:(1)把C(0,4)、(1,-6)代入y=ax²-6ax+c,可求a、c的值,即可確定函數(shù)解析式;

(2)若 a=1時(shí),計(jì)算出△的值,即可判斷拋物線與x軸交點(diǎn)的個(gè)數(shù);

(3)由二次函數(shù)方程算出對(duì)稱軸為x=3,頂點(diǎn)D為(3,4-9a)。因?yàn)锳D=BD,所以⊿ADB是等腰三角形且對(duì)稱軸垂直平分AB。因?yàn)锳B=8,所以A,B的橫坐標(biāo)分別為-1和7,縱坐標(biāo)同為4+7a,所以⊿ADB的高就是A(或B)與D的縱坐標(biāo)之差16a.因?yàn)椤螦EB為銳角,所以E點(diǎn)在線段AB的下方(在上方則是鈍角),由于弧AB所對(duì)的圓周角都相等,不妨就讓△AEB為一個(gè)等腰三角形,即E的橫坐標(biāo)為3.過E做AB的垂線,必過圓心P,所以△AEB的高為8.

所以,比較16a和8的大小就行。當(dāng)0<a<0.5時(shí),∠AEB <∠ADB ;當(dāng)a=0.5時(shí),∠AEB =∠ADB ;當(dāng)0.5<a≤1時(shí),∠AEB >∠ADB.

試題解析:(1)把C(0,4)、(1,-6)代入y=ax²-6ax+c,得:

,解得:

所以二次函數(shù)的解析式為:.

(2)當(dāng)a=1時(shí),

△=(-6)2-4c=36-4c

(i)當(dāng)36-4c>0,即c<9時(shí),拋物線與x軸交點(diǎn)的個(gè)數(shù)有2個(gè);

(ii)當(dāng)36-4c=0,即c=9時(shí),拋物線與x軸交點(diǎn)的個(gè)數(shù)有1個(gè);

(iii)36-4c<0,即c>9時(shí),拋物線與x軸沒有交點(diǎn);

(3)當(dāng)0<a<0.5時(shí),∠AEB <∠ADB ;當(dāng)a=0.5時(shí),∠AEB =∠ADB ;當(dāng)0.5<a≤1時(shí),∠AEB >∠ADB.

考點(diǎn): 二次函數(shù)綜合題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•松北區(qū)一模)已知矩形ABCD的周長為12,E、F、G、H為矩形ABCD的各邊中點(diǎn),若AB=x,四邊形EFGH的面積為y.
(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí),y最大,并求出最大值.
(參考公式:當(dāng)x=-
b
2a
時(shí),二次函數(shù)y=ax+bx+c(a≠0)有最。ù螅┲
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點(diǎn)A.B,與y軸交于點(diǎn) C.

(1)寫出A. B.C三點(diǎn)的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)問題情境

已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時(shí),它的周長最?最小值是多少?

數(shù)學(xué)模型

設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為                       

探索研究

⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).

①填寫下表,畫出函數(shù)的圖象:

x

……

1

2

3

4

……

y

……

 

 

 

 

 

 

 

……

 

 

 

2

 
②觀察圖象,試描述該函數(shù)的增減性(y隨x變化發(fā)生什么變化);

③在求二次函數(shù)y=ax+bx+c(a≠0)的最大(。┲禃r(shí),除了通過觀察圖象,還可以通過

配方得到.請(qǐng)你通過配方求函數(shù)(x>0)的最小值.

解決問題

⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省衢州華外九年級(jí)上學(xué)期第二次質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

(本題10分)問題情境


已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時(shí),它的周長最。孔钚≈凳嵌嗌?
數(shù)學(xué)模型
設(shè)該矩形的一邊長為x,周長為y,則y與x的函數(shù)關(guān)系式為                       
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).
①填寫下表,畫出函數(shù)的圖象:

x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……
 

2

 
②觀察圖象,試描述該函數(shù)的增減性(y隨x變化發(fā)生什么變化);

③在求二次函數(shù)y=ax+bx+c(a≠0)的最大(。┲禃r(shí),除了通過觀察圖象,還可以通過
配方得到.請(qǐng)你通過配方求函數(shù)(x>0)的最小值.
解決問題
⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆黑龍江省哈爾濱市松北區(qū)九年級(jí)升學(xué)調(diào)研測(cè)試(一)數(shù)學(xué)試卷(帶解析) 題型:解答題

已知矩形ABCD的周長為12,E、F、G、H為矩形ABCD的各邊中點(diǎn),若AB=x,四邊形EFGH的面積為y.

(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí),y最大,并求出最大值.
(參考公式:當(dāng)x=-時(shí),二次函數(shù)y=ax+bx+c(a≠o)有最小(大)值

查看答案和解析>>

同步練習(xí)冊(cè)答案