二次函數(shù)與y軸交點(diǎn)坐標(biāo)為(   )
A.(0,1)B.(0,2)C.(0,-1)D.(0,-2)
B

試題分析:由題意把代入二次函數(shù),即可得到結(jié)果.
中,當(dāng)時(shí),
則二次函數(shù)與y軸交點(diǎn)坐標(biāo)為(0,2)
故選B.
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握x軸上的點(diǎn)的縱坐標(biāo)為0,y軸上的點(diǎn)的橫坐標(biāo)為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形在平面直角坐標(biāo)系中的位置如圖所示,.拋物線(xiàn))經(jīng)過(guò)點(diǎn)和點(diǎn),與軸分別交于點(diǎn)、(點(diǎn)在點(diǎn)左側(cè)),且,則下列結(jié)論:①;②;③;④;⑤連接、,則,其中正確結(jié)論的個(gè)數(shù)為
A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連結(jié)MC,把△MBC沿x軸的負(fù)方向平移OC的長(zhǎng)度后得到△DAO.

(1)直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過(guò)原點(diǎn)的拋物線(xiàn)上,點(diǎn)P在第一象限內(nèi)的該拋物線(xiàn)上移動(dòng),過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連結(jié)OP.
①若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo);
②試問(wèn)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在一點(diǎn)T,使得的值最大.若存在,求出T點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若二次函數(shù)的圖象的對(duì)稱(chēng)軸是直線(xiàn)x=1.5,并且圖象過(guò)A(0,-4)和B(4,0)
(1)求此二次函數(shù)的解析式; 
(2)求此二次函數(shù)圖象上點(diǎn)A關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)A′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)的圖象與軸的一個(gè)交點(diǎn)為A,另一個(gè)交點(diǎn)為B,與軸交于點(diǎn)C.
(1)求的值及點(diǎn)B、點(diǎn)C的坐標(biāo);
(2)直接寫(xiě)出當(dāng)時(shí),的取值范圍;
(3)直接寫(xiě)出當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若二次函數(shù)的圖象與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn),則△ABC的面積是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線(xiàn)的頂點(diǎn)坐標(biāo)是(   )
A.(1,-3)B.(-1,-3)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)水果市場(chǎng)某批發(fā)商經(jīng)銷(xiāo)一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.
(1)現(xiàn)要保證每天盈利6000元,同時(shí)又要讓顧客盡可能多得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)若該批發(fā)商單純從經(jīng)濟(jì)角度看,那么每千克應(yīng)漲價(jià)多少元,能使商場(chǎng)獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

把一邊長(zhǎng)為60cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨,折成一個(gè)長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).
(1)如圖1,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子.
①要使折成的長(zhǎng)方體盒子的底面積為576cm2,那么剪掉的正方形的邊長(zhǎng)為多少?
②折成的長(zhǎng)方體盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.
(2)如圖2,若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分正好折成一個(gè)有蓋的長(zhǎng)方體盒子.若折成的一個(gè)長(zhǎng)方體盒子的表面積為2800cm2,求此時(shí)長(zhǎng)方體盒子的長(zhǎng)、寬、高(只需求出符合要求的一種情況).
   

查看答案和解析>>

同步練習(xí)冊(cè)答案