【題目】如圖,點C是線段AB上一點,M是線段AC的中點,N是線段BC的中點.
(1)如果AB=10cm,AM=3cm,求CN的長;
(2)如果MN=6cm,求AB的長.
【答案】(1)CN=2(cm);(2)AB=12(cm).
【解析】試題分析:(1)、根據(jù)點C為中點求出AC的長度,然后根據(jù)AB的長度求出BC的長度,最后根據(jù)點N為中點求出CN的長度;(2)、根據(jù)中點的性質(zhì)得出AC=2MC,BC=2NC,最后根據(jù)AB=AC+BC=2MC+2NC=2(MC+NC)=2MN得出答案.
試題解析:解:(1)∵M是線段AC的中點,∴CM=AM=3cm,AC=6cm.又AB=10cm,
∴BC=4cm.∵N是線段BC的中點,∴CN=BC=×4=2(cm);
(2)∵M是線段AC的中點,N是線段BC的中點,∴NC=BC,CM=AC,
∴MN=NC+CM=BC+AC= (BC+AC)=AB,∴AB=2MN=2×6=12(cm).
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面文字,然后按要求解題.
例:1+2+3+…+100=?如果一個一個順次相加顯然太麻煩,我們仔細分析這100個連續(xù)自然數(shù)的規(guī)律和特點,可以發(fā)現(xiàn)運用加法的運算律,是可以大大簡化計算,提高計算速度的.因為1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果:
1+2+3+4+5+…+100
=(1+100)+(2+99)+(3+98)+…+(50+51)
=101× = .
(1)補全例題解題過程;
(2)請猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n= .
(3)試計算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A( , 0),點B(0,1),作第一個正方形OA1C1B1且點A1在OA上,點B1在OB上,點C1在AB上;作第二個正方形A1A2C2B2且點A2在A1A上,點B2在A1C2上,點C2在AB上…,如此下去,則點Cn的縱坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB=60厘米.
(1)點P沿線段AB自A點向B點以4厘米/分的速度運動,同時點Q沿線段自B點向A點以6厘米/分的速度運動,幾分鐘后,P、Q兩點相遇?
(2)幾分鐘后,P、Q兩點相距20厘米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.
(1)求A、B兩種鋼筆每支各多少元?
(2)若該文具店要購進A,B兩種鋼筆共90支,總費用不超過1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購買方案?
(3)文具店以每支30元的價格銷售B種鋼筆,很快銷售一空,于是,文具店決定在進價不變的基礎(chǔ)上再購進一批B種鋼筆,漲價賣出,經(jīng)統(tǒng)計,B種鋼筆售價為30元時,每月可賣68支;每漲價1元,每月將少賣4支,設(shè)文具店將新購進的B種鋼筆每支漲價a元(a為正整數(shù)),銷售這批鋼筆每月獲利W元,試求W與a之間的函數(shù)關(guān)系式,并且求出B種鉛筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.四個結(jié)論中正確結(jié)論的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com