【題目】如圖,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現(xiàn)有兩點(diǎn)P,Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),沿邊AB,CB向終點(diǎn)B移動(dòng).其中點(diǎn)P,Q的速度分別為2cm/s,1cm/s,且當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止移動(dòng).設(shè)P,Q兩點(diǎn)移動(dòng)時(shí)間為x s.
(1)用含x的代數(shù)式表示BQ、BP的長度,并求x的取值范圍.
(2)設(shè)四邊形APQC的面積為y(cm2),求y與x的函數(shù)關(guān)系式?
(3)是否存在這樣的x,使得四邊形APQC的面積是△ABC面積的 ?如果存在,求出x的值;不存在請說明理由.
【答案】
(1)
解:∵∠B=90°,AC=10,BC=6,
∴AB=8.
∴BQ=6﹣x,PB=8﹣2x
(2)
解:由題意,得
y=S四邊形APQC=S△ABC﹣SPBQ
= ABBC﹣ PBQB
= ×6×8﹣ (6﹣x)(8﹣2x)
=24﹣(x2﹣10x+24)
=﹣x2+10x
(3)
解:假設(shè)存在x的值,使得四邊形APQC的面積是△ABC面積的 ,
則﹣x2+10x= ×6×8× ,
解得x1=2,x2=8(舍去).
假設(shè)成立,所以當(dāng)x=8時(shí),四邊形APQC的面積是△ABC面積的
【解析】(1)首先運(yùn)用勾股定理求出AB邊的長度,然后根據(jù)路程=速度×?xí)r間,分別表示出BQ、PB的長度;(2)利用y=S四邊形APQC=S△ABC﹣SPBQ求解即可;(3)根據(jù)四邊形APQC的面積=△ABC的面積﹣△PBQ的面積,列出方程,根據(jù)解的情況即可判斷.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的面積(三角形的面積=1/2×底×高).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(﹣2,3)和點(diǎn)B(m,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直線x=1上有一點(diǎn)P,反比例函數(shù)圖象上有一點(diǎn)Q,若以A、B、P、Q為頂點(diǎn)的四邊形是以AB為邊的平行四邊形,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的每一個(gè)內(nèi)角都相等,并且每個(gè)外角都等于和它相鄰的內(nèi)角的一半.
(1)求這個(gè)多邊形是幾邊形;
(2)求這個(gè)多邊形的每一個(gè)內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.
(1)若兩人同時(shí)出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時(shí)能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時(shí)二人相遇,則小張的車速應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,∠AOB內(nèi)有一定點(diǎn)P,且OP=12,在OA上有一點(diǎn)Q,OB上有一點(diǎn)R,若△PQR周長最小,則最小周長是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計(jì)劃在“陽光體育”活動(dòng)課程中開設(shè)乒乓球、羽毛球、籃球、足球四個(gè)體育活動(dòng)項(xiàng)目供學(xué)生選擇.為了估計(jì)全校學(xué)生對這四個(gè)活動(dòng)項(xiàng)目的選擇情況,體育老師從全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(規(guī)定每人必須并且只能選擇其中的一個(gè)項(xiàng)目),并把調(diào)查結(jié)果繪制成如圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請你根據(jù)圖中信息解答下列問題:
(1)求參加這次調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“籃球”項(xiàng)目所對應(yīng)扇形的圓心角度數(shù);
(3)若該校共有600名學(xué)生,試估計(jì)該校選擇“足球”項(xiàng)目的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B從原點(diǎn)出發(fā),沿y軸負(fù)方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),分別以OB,AB為直角邊在第三、第四象限作等腰Rt△OBE,等腰Rt△ABF,連結(jié)EF交y軸于P點(diǎn),當(dāng)點(diǎn)B在y軸上運(yùn)動(dòng)時(shí),經(jīng)過t秒時(shí),點(diǎn)E的坐標(biāo)是_____(用含t的代數(shù)式表示),PB的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com