【題目】如圖,將一張正方形紙片的4個角剪去4個大小一樣的小正方形,然后折起來就可以制成一個無蓋的長方體紙盒,設這個正方形紙片的邊長為a,這個無蓋的長方體盒子高為h.
(1)若a=18cm,h=4cm,則這個無蓋長方體盒子的底面面積為 ;
(2)用含a和h的代數(shù)式表示這個無蓋長方體盒子的容積V= ;
(3)若a=18cm,試探究:當h越大,無蓋長方體盒子的容積V就越大嗎?請舉例說明;這個無蓋長方體盒子的最大容積是 .
【答案】(1)100cm2;(2)h(a﹣2h)2cm3;(3)432cm3 .
【解析】
(1)根據(jù)已知得出長方體底面的邊長進而求出即可;
(2)由于原來正方形的邊長為a,如果四個角上各剪去一個同樣大小的正方形,那么無蓋長方體的底面的長寬分別都是(a-2h),高是h,由此即可表示這個無蓋長方體的容積;
(3)根據(jù)材料一定,長方體中體積最大與底面各積和高都有關進行解答即可.
(1)∵a=18cm,h=4cm,
∴這個無蓋長方體盒子的底面面積為:(a﹣2h)(a﹣2h)=(18﹣2×4)×(18﹣2×4)=100(cm2),
故答案為:100cm2;
(2)這個無蓋長方體盒子的容積V=h(a﹣2h)(a﹣2h)=h(a﹣2h)2(cm3),
故答案為:h(a﹣2h)2cm3;
(3)若a=18cm,當h越大,無蓋長方體盒子的容積V不一定就越大,
如h=6時,體積V=216,h=8時,體積V=32;
∵V=h(18﹣2h)2
=4(9-h)(9-h)h
=2(9-h)(9-h)2h
9-h+9-h+2h=0,
∴當9-h=2h時,體積最大,
即h=3時,此時體積最大,
∴這個無蓋長方體盒子的最大容積是:3×(18﹣6)2=432(cm3),
故答案為:432cm3 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉90°后得到△A1B1C.
(1)畫出△A1B1C,直接寫出點A1、B1的坐標;
(2)求在旋轉過程中,△ABC所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結論:
(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為﹣3;
(2)當﹣<x<2時,y<0;
(3)a﹣b+c=0;
(4)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸兩側
則其中正確結論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,O是坐標原點,直線AB交x軸于點A(﹣4,0),交y軸于點B,拋物線y=ax2+2ax+3(a≠0)經(jīng)過A,B兩點.P是線段AO上的一動點,過點P作PC⊥x軸交直線AB于點C,交拋物線于點D.
(1)求a及AB的長.
(2)連結PB,若tan∠ABP=,求點P的坐標.
(3)連結BD,以BD為邊作正方形BDEF,是否存在點P使點E恰好落在拋物線的對稱軸上?若存在,請求出點P的坐標;若不存在,請說明理由.
(4)連結OC,若S△BDC:S△OBC=1:2,將線段BD繞點D按順時針方向旋轉,得到DB′.則在旋轉的過程中,當點A,B到直線DB′的距離和最大時,請直接寫出點B′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一座跨河拱橋,橋拱是圓弧形,跨度AB為16米,拱高CD為4米.
(1)求橋拱的半徑R.
(2)若大雨過后,橋下水面上升到EF的位置,且EF的寬度為12米,求拱頂C到水面EF的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,對稱軸為直線,圖象經(jīng)過,下列結論:①,②,③,④,其中正確的是( )
A. ①②③④ B. ①③④ C. ①③ D. ①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com