(2001•湖州)已知拋物線(xiàn)y=ax2+bx+c中,4a-b=0,a-b+c>0,拋物線(xiàn)與x軸有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)之間的距離小于2,則下列判斷錯(cuò)誤的是( )
A.a(chǎn)bc<0
B.c>0
C.4a>c
D.a(chǎn)+b+c>0
【答案】分析:由拋物線(xiàn)的開(kāi)口方向判斷a與0的關(guān)系,由拋物線(xiàn)與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸及拋物線(xiàn)與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解答:解:∵4a-b=0,∴拋物線(xiàn)的對(duì)稱(chēng)軸為x==-2
∵a-b+c>0,
∴當(dāng)x=-1時(shí),y>0,
∵拋物線(xiàn)與x軸有兩個(gè)不同的交點(diǎn)且這兩個(gè)交點(diǎn)之間的距離小于2,
∴拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)位于-3與-1之間,b2-4ac>0
∴16a2-4ac=4a(4a-c)>0
據(jù)條件得圖象:
∴a>0,b>0,c>0,
∴abc>0,4a-c>0,
∴4a>c
當(dāng)x=1時(shí),y=a+b+c>0
故選A.
點(diǎn)評(píng):此題考查了二次函數(shù)各系數(shù)與函數(shù)圖象的關(guān)系,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:解答題

(2001•湖州)已知如圖,D是邊長(zhǎng)為4的正△ABC的邊BC上一點(diǎn),ED∥AC交AB于E,DF⊥AC交AC于F,設(shè)DF=x.
(1)求△EDF的面積y與x的函數(shù)關(guān)系式和自變量x的取值范圍.
(2)當(dāng)x為何值時(shí),△EDF的面積最大,最大面積是多少?
(3)若△DCF與由E、F、D三點(diǎn)組成的三角形相似,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2001•湖州)已知拋物線(xiàn)y=ax2+bx+c中,4a-b=0,a-b+c>0,拋物線(xiàn)與x軸有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)之間的距離小于2,則下列判斷錯(cuò)誤的是( )
A.a(chǎn)bc<0
B.c>0
C.4a>c
D.a(chǎn)+b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004-2005學(xué)年下學(xué)期九年級(jí)綜合優(yōu)化測(cè)試數(shù)學(xué)A卷(解析版) 題型:選擇題

(2001•湖州)已知拋物線(xiàn)y=ax2+bx+c中,4a-b=0,a-b+c>0,拋物線(xiàn)與x軸有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)之間的距離小于2,則下列判斷錯(cuò)誤的是( )
A.a(chǎn)bc<0
B.c>0
C.4a>c
D.a(chǎn)+b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•湖州)已知n個(gè)數(shù)據(jù)的和是56,平均數(shù)為8,則n=   

查看答案和解析>>

同步練習(xí)冊(cè)答案