【題目】如圖,AB、CD交于點O,∠1=∠2,∠3:∠1=8:1,求∠4的度數(shù).
【答案】解:∵平分∠BOD, ∴∠1=∠2,
∵∠3:∠1=8:1,
∴∠3=8∠1.
∵∠1+∠2+∠3=180°,
∴∠1+∠1+8∠1=180°,
解得∠1=18°,
∴∠4=∠1+∠2=36°
【解析】根據(jù)角平分線的定義得∠1=∠2,由∠3:∠1=8:1得∠3=8∠1.根據(jù)平角的定義有∠1+∠2+∠3=180°,則∠1+∠1+8∠1=180°,可解得出∠1=18°,而根據(jù)對頂角相等有∠4=∠1+∠2,然后把∠1、∠2的度數(shù)代入計算即可.
【考點精析】解答此題的關(guān)鍵在于理解對頂角和鄰補角的相關(guān)知識,掌握兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】魔術(shù)師為大家表演魔術(shù).他請觀眾想一個數(shù),然后將這個數(shù)按以下步驟操作:
魔術(shù)師立刻說出觀眾想的那個數(shù).
(1)如果小明想的數(shù)是﹣1,那么他告訴魔術(shù)師的結(jié)果應(yīng)該是;
(2)如果小聰想了一個數(shù)并告訴魔術(shù)師結(jié)果為93,那么魔術(shù)師立刻說出小聰想的那個數(shù)是;
(3)觀眾又進(jìn)行了幾次嘗試,魔術(shù)師都能立刻說出他們想的那個數(shù),請你說出其中的奧妙.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°. 因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直后的公路AB的長;
(2)問公路改直后該段路程比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:已知:直線l和l外一點P.(如圖1)求作:直線l的垂線,使它經(jīng)過點P.作法:如圖2
①在直線l上任取兩點A,B;
②分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;
③作直線PQ. 所以直線PQ就是所求的垂線.
請回答:該作圖的依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個正比例函數(shù)的圖象經(jīng)過不同象限的兩點A(3,m),B(n,2),那么一定有( 。
A.m>0,n>0B.m<0,n<0C.m>0,n<0D.m<0,n>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.
(1)若∠B=70°,則∠NMA的度數(shù)是 .
(2)連接MB,若AB=8cm,△MBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在點P,使由P,B,C構(gòu)成的△PBC的周長值最小?若存在,標(biāo)出點P的位置并求△PBC的周長最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB∥CD,直線l與直線AB、CD相交于點E、F,點P是射線EA上的一個動點(不包括端點E),將△EPF沿PF折疊,使頂點E落在點Q處.
(1)若∠PEF=48°,點Q恰好落在其中的一條平行線上,請直接寫出∠EFP的度數(shù).
(2)若∠PEF=75°,∠CFQ= ∠PFC,求∠EFP的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com