【題目】如圖,A(0,1),M(3,2),N(4,4) , 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿y
軸以每秒1個(gè)單位長(zhǎng)的速度向上移動(dòng),且過(guò)點(diǎn)P的直線l:y=-x+b也隨之移動(dòng),設(shè)移動(dòng)時(shí)間為 t 秒.(直線y = kx+b平移時(shí)k不變)
(1)當(dāng)t=3時(shí),求 l 的解析式;
(2)若點(diǎn)M,N位于l 的異側(cè),確定 t 的取值范圍.
【答案】
(1)解:直線y=-x+b交y軸于點(diǎn)P(0,b),
由題意,得b>0,t≥0,b=1+t
當(dāng)t=3時(shí),b=4
∴y=-x+4
(2)解:當(dāng)直線y=-x+b過(guò)M(3,2)時(shí),2=-3+b解得b=5,
∴5=1+t∴t=4
當(dāng)直線y=-x+b過(guò)N(4,4)時(shí),4=-4+b解得 b=8
∴8=1+t∴t=7
∴4<t<7
【解析】當(dāng)t=3時(shí), 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿y軸以每秒1個(gè)單位長(zhǎng)的速度向上移動(dòng),得出點(diǎn)P的坐標(biāo),進(jìn)而求出函數(shù)解析式。
(2)分別求出直線l 經(jīng)過(guò)點(diǎn)M和經(jīng)過(guò)點(diǎn)N時(shí)t的值,即可得到t的取值范圍。
【考點(diǎn)精析】關(guān)于本題考查的確定一次函數(shù)的表達(dá)式,需要了解確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問(wèn)題的一般方法是待定系數(shù)法才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過(guò)10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過(guò)10噸時(shí),超過(guò)的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià);
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,寫出y與x之間的函數(shù)關(guān)系式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)三角形的兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)不可能的是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC各個(gè)頂點(diǎn)的坐標(biāo)分別是O(0,0)、A(2,0)、B(4,2)、C(2,3),過(guò)點(diǎn)C與軸平行的直線EF與過(guò)點(diǎn)B與軸平行的直線EH交于點(diǎn)E.
求四邊形OABC的面積;
在線段EH上是否存在點(diǎn)P,使四邊形OAPC的面積為7?若不存在,說(shuō)明理由,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,.以為直徑的⊙與相切于,交于點(diǎn),的延長(zhǎng)線交⊙于點(diǎn),過(guò)點(diǎn)作弦,垂足為點(diǎn).
(1)求證:①,②.
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列分解因式正確的是( )
A.﹣a+a3=﹣a(1+a2)
B.2a﹣4b+2=2(a﹣2b)
C.a2﹣4=(a﹣2)2
D.a2﹣2a+1=(a﹣1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O,與斜邊AB交于點(diǎn)D、E為BC邊的中點(diǎn),連接DE.
(1)求證:DE是⊙O的切線;
(2)填空:①若∠B=30°,AC=2,則DE= ;
②當(dāng)∠B= °時(shí),以O(shè),D,E,C為頂點(diǎn)的四邊形是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com