【題目】如圖,在平行四邊形紙片ABCD中,AB=3,將紙片沿對角線AC對折,BC邊與AD邊交于點E,此時,△CDE恰為等邊三角形,則圖中重疊部分的面積為_____.
【答案】.
【解析】
根據(jù)翻折的性質(zhì),及已知的角度,可得△AEB’為等邊三角形,再由四邊形ABCD為平行四邊形,且∠B=60°,從而知道B’,A,B三點在同一條直線上,再由AC是對稱軸,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE邊上的高,從而得到面積.
解:∵△CDE恰為等邊三角形,
∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,
∴△AEB’為等邊三角形,
由四邊形ABCD為平行四邊形,且∠B=60°,
∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,
∴B’,A,B三點在同一條直線上,
∴AC是對折線,
∴AC垂直且平分BB’,
∴AB=AB’=AE=3,AE邊上的高,h=CD×sin60°=,
∴面積為.
科目:初中數(shù)學 來源: 題型:
【題目】小明在一次打籃球時,籃球傳出后的運動路線為如圖所示的拋物線,以小明所站立的位置為原點O建立平面直角坐標系,籃球出手時在O點正上方1m處的點P.已知籃球運動時的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y=-x2+x+c.
(1)求y與x之間的函數(shù)表達式;
(2)球在運動的過程中離地面的最大高度;
(3)小亮手舉過頭頂,跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC、∠ACB的平分線BD,CE相交于O點,且BD交AC于點D,CE交AB于點E,某同學分析圖形后得出以下結(jié)論,上述結(jié)論一定正確的是______(填代號).
①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,BF平分∠ABC交AD于點F,AE⊥BF于點O,交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)連接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:直線AB、CD相交于點O;
(1)若∠AOC=30°,則∠BOC= °,∠BOD= °;
(2)將直線CD繞點O旋轉(zhuǎn),請根據(jù)下表所給數(shù)據(jù)將表格補充完整;
∠AOC | 60° | 90° | x° |
∠BOD |
|
|
|
(3)如圖3,過點O分別作∠AOC與∠AOD的角分線OE、OF,若∠BOD的度數(shù)為α,請用含α的代數(shù)式表示∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC與BD相交于點O,AB=5,AD=3,E是AB上的一點,F是AD上的一點,連接BO和FO.
(1)當點E為AB中點時,求EO的長度;
(2)求線段AO的取值范圍;
(3)當EO⊥FO時,連接EF.求證:BE+DF>EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形紙片ABCD中,AB=3,將紙片沿對角線AC對折,BC邊與AD邊交于點E,此時,△CDE恰為等邊三角形,則圖中重疊部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為AD的中點,延長CE交BA的延長線于點F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=110°,求∠ABE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com