【題目】拋物線y=(x﹣2)2+1的頂點坐標是

【答案】(2,1)
【解析】解:因為y=(x﹣2)2+1是拋物線的頂點式,
根據(jù)頂點式的坐標特點可知,頂點坐標為(2,1).
【考點精析】利用二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,BC=8,∠BAC=110°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E.則△ADE的周長為;∠DAE的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三個連續(xù)自然數(shù)的和不大于9,那么這樣自然數(shù)共有   組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=﹣2x2,下列結(jié)論正確的是(

A.yx的增大而增大B.圖象關(guān)于直線x0對稱

C.圖象開口向上D.無論x取何值,y的值總是負數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校將周五上午大課間活動項目定為跳繩活動,為此學(xué)校準備購置長、短兩種跳繩若干.已知長跳繩的單價比短跳繩單價的三倍少4元,且購買2條長跳繩與購買5條短跳繩的費用相同.
(1)兩種跳繩的單價各是多少元?
(2)若學(xué)校準備用不超過1950元的現(xiàn)金購買190條長、短跳繩,且短跳繩的條數(shù)不超過長跳繩的5倍,問學(xué)校有幾種購買方案可供選擇?并寫出這幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次測量活動中,小麗站在離樹底部E處5m的B處仰望樹頂C,仰角為30°,已知小麗的眼睛離地面的距離AB為1.65m,那么這棵樹大約有多高?(結(jié)果精確到0.1m,參考數(shù)據(jù):1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC外側(cè)作直線AP,點B關(guān)于直線AP的對稱點為D,連接BD,CD,其中CD交直線AP于點E.
(1)依題意補全圖1;

(2)若∠PAB=30°,求∠ACE的度數(shù);
(3)如圖2,若60°<∠PAB<120°,判斷由線段AB,CE,ED可以構(gòu)成一個含有多少度角的三角形,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次三項式x2﹣2(m+1)x+16是一個完全平方式,那么m的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(0,2),B(4,0).
(1)如圖1,連接AB,若D(0,﹣6),DE⊥AB于點E,B、C關(guān)于y軸對稱,M是線段DE上的一點,且DM=AB,連接AM,試判斷線段AC與AM之間的位置和數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,在(1)的條件下,若N是線段DM上的一個動點,P是MA延長線上的一點,且DN=AP,連接PN交y軸于點Q,過點N作NH⊥y軸于點H,當N點在線段DM上運動時,△MQH的面積是否為定值?若是,請求出這個值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案