【題目】圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)
【答案】1.4米.
【解析】過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長度,進而可得出EF的長度,再在Rt△MEF中利用勾股定理即可求出EM的長,此題得解.
過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,如圖所示,
∵AB=CD,AB+CD=AD=2,
∴AB=CD=1,
在Rt△ABE中,AB=1,∠A=37°,
∴BE=ABsin∠A≈0.6,AE=ABcos∠A≈0.8,
在Rt△CDF中,CD=1,∠D=45°,
∴CF=CDsin∠D≈0.7,DF=CDcos∠D≈0.7,
∵BE⊥AD,CF⊥AD,
∴BE∥CM,
又∵BE=CM,
∴四邊形BEMC為平行四邊形,
∴BC=EM,CM=BE.
在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,F(xiàn)M=CF+CM=1.3,
∴EM=≈1.4,
∴B與C之間的距離約為1.4米.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖:已知D為等腰直角△ABC斜邊BC上的一個動點(D與B、C均不重合),連結(jié)AD,△ADE是等腰直角三角形,DE為斜邊,連結(jié)CE,求∠ECD的度數(shù).
(2)當(1)中△ABC、△ADE都改為等邊三角形,D點為△ABC中BC邊上的一個動點(D與B、C均不重合),當點D運動到什么位置時,△DCE的周長最小?請?zhí)角簏cD的位置,試說明理由,并求出此時∠EDC的度數(shù).
(3)在(2)的條件下,當點D運動到使△DCE的周長最小時,點M是此時射線AD上的一個動點,以CM為邊,在直線CM的下方畫等邊三角形CMN,若△ABC的邊長為4,請直接寫出DN長度的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著航母編隊的成立,我國海軍日益強大,2018年4月12日,中央軍委在南海海域降重舉行海上閱兵,在閱兵之前我軍加強了海上巡邏,如圖,我軍巡邏艦在某海域航行到A處時,該艦在觀測點P的南偏東45°的方向上,且與觀測點P的距離PA為400海里;巡邏艦繼續(xù)沿正北方向航行一段時間后,到達位于觀測點P的北偏東30°方向上的B處,問此時巡邏艦與觀測點P的距離PB為多少海里?(參考數(shù)據(jù):≈1.414,≈1.732,結(jié)果精確到1海里).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店5月份購進甲、乙兩種水果共花費1700元,其中甲種水果8元/千克,乙種水果18元/千克.6月份,這兩種水果的進價上調(diào)為:甲種水果10元/千克,乙種水果20元/千克.
(1)若該店6月份購進這兩種水果的數(shù)量與5月份都相同,將多支付貨款300元,求該店5月份購進甲、乙兩種水果分別是多少千克?
(2)若6月份將這兩種水果進貨總量減少到120千克,且甲種水果不超過乙種水果的3倍,則6月份該店需要支付這兩種水果的貨款最少應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當∠E=90°保持不變,移動直角頂點E,使∠MCE=∠ECD,當直角頂點E點移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①是正方體的平面展開圖,六個面的點數(shù)分別為1點、2點、3點、4點、5點、6點,將點數(shù)朝外折疊成一枚正方體骰子,并放置于水平桌面上,如圖②所示,若骰子初始位置為圖②所示的狀態(tài),將骰子向右翻滾,則完成1次翻轉(zhuǎn),此時骰子朝下一面的點數(shù)是2,那么按上述規(guī)則連線完成2次翻折后,骰子朝下一面的點數(shù)是3點;連續(xù)完成2019次翻折后,骰子朝下一面的點數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=AB,∠BAC=90°,D是AC邊上一點,連接BD,AF⊥BD于點F,點E在BF上,連接AE,∠EAF=45°,連接CE,AK⊥CE于點K,交DE于點H,∠DEC=30°,HF=,則EC=______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(圖4).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com