【題目】已知關(guān)于x的一元二次方程。
(1)如果方程根的判別式的值為1,求m的值。
(2)如果方程有一個(gè)根是—1,求此方程的根的判別式的值。
【答案】(1)m=2;(2) .
【解析】
(1)根據(jù)判別式的定義得到△=(3m-1)2-4m(2m-1)=1,解得m1=0,m2=2,再利用一元二次方程的定義得到m=2.
(2)根據(jù)一元二次方程的解的定義,將x=-1代入一元二次方程,求得m值,然后將m值代入原方程,即可求出此方程的根的判別式的值.
解:(1)
,
△=(3m-1)2-4m(2m-1)=1,
整理得m2-2m=0,解得m1=0,m2=2,
∵m≠0,
∴m=2;
(2)根據(jù)題意,將x=-1代入方程得 ,
整理,得:6m-2=0,
解得:m=,
原方程為 ,
△=b2-4ac= = .
故答案為:(1)m=2;(2) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.
(1)若∠DAB=50°,求∠ATC的度數(shù);
(2)若⊙O半徑為2,CT=,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3),雙曲線y= (x>0)的圖象經(jīng)過BC上的點(diǎn)D與AB交于點(diǎn)E,連接DE,若E是AB的中點(diǎn).
(1)求點(diǎn)D的坐標(biāo);
(2)點(diǎn)F是OC邊上一點(diǎn),若△FBC和△DEB相似,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,網(wǎng)格圖由邊長(zhǎng)為1的小正方形所構(gòu)成,Rt△ABC的頂點(diǎn)分別是A(-1,3),B(-3,-1),C(-3,3).
(1)請(qǐng)?jiān)趫D1中作出△ABC關(guān)于點(diǎn)(-1,0)成中心對(duì)稱△,并分別寫出A,C對(duì)應(yīng)點(diǎn)的坐標(biāo) ;
(2)設(shè)線段AB所在直線的函數(shù)表達(dá)式為,試寫出不等式的解集是 ;
(3)點(diǎn)M和點(diǎn)N 分別是直線AB和y軸上的動(dòng)點(diǎn),若以,,M,N為頂點(diǎn)的四邊形是平行四邊形,求滿足條件的M點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將3個(gè)同樣的正方體重疊放置在桌面上,每個(gè)正方體的6個(gè)面上分別寫有-3、-2、-1、1、2、3,相對(duì)的兩面上寫的數(shù)字互為相反數(shù),現(xiàn)在有5個(gè)面的數(shù)字無論從哪個(gè)角度都看不到,這5個(gè)看不到的面上數(shù)字的乘積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為2的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為( 。
A. (﹣2,1)B. (﹣1,2)C. (,﹣1)D. (﹣,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是一個(gè)由53個(gè)大小相同的小正方體堆成的立體圖形,從正面觀察這個(gè)立體圖形得到的平面圖形如圖2所示.
(1)請(qǐng)?jiān)趫D3、圖4中依次畫出從左面、上面觀察這個(gè)立體圖形得到的平面圖形
(2)保持這個(gè)立體圖形中最底層的小正方體不動(dòng),從其余部分中取走k個(gè)小正方體,得到一個(gè)新的立體圖形.如果依次從正面、左面、上面觀察新的立體圖形,所得到的平面圖形分別與圖2、圖3、圖4是一樣的,那么k的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的對(duì)角線相交于點(diǎn),,.
(1)求證:四邊形是菱形;
(2)若將題設(shè)中“矩形”這一條件改為“菱形”,其余條件不變,則四邊形是__________形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com