【題目】(1)已知,求代數(shù)式的值.

(2)20186月武侯區(qū)某學校開展了主題為“陽光下成長,妙筆繪武侯”學生繪畫書法作品比賽,要求參賽學生每人交一件作品. 現(xiàn)將從中挑選的40件參賽作品的成績(單位:分)統(tǒng)計如下:

等級

成績(表示)

頻數(shù)

頻率

0.2

20

12

0.3

請根據(jù)上表提供的信息,解答下列問題:

①表中的值為 ,的值為 ;

②將本次獲得等級的參賽作品依次用標簽表示. 學校決定從中選取兩件作品進行全校展示,所代表的作品必須參展,另一件作品從等級余下的作品中抽取,求展示作品剛好是的概率.

【答案】(1),10(2)①8,0.5;.

【解析】

(1)根據(jù)完全平方公式和等量代換進行計算即可解答.

(2) 根據(jù)等級C的頻數(shù)和頻率就可以求出數(shù)據(jù)總數(shù),繼而可以求出ab的值;

列出樹狀圖即可求出作品剛好是的概率.

解:(1= ,

x-y=3,

∴原式= =10;

2)①由題干可得, ,解得a=8b=0.5;

②畫樹狀圖如下:

∴展示作品剛好是的概率為 .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣)(﹣+|1|+3π0

2

3

4)(2+32019232020﹣(322

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】無錫市靈山勝境公司廠生產(chǎn)一種新的大佛紀念品,每件紀念品制造成本為18元,試銷過程發(fā)現(xiàn),每月銷量萬件與銷售單價之間的關系可以近似地看作一次函數(shù)

寫出公司每月的利潤萬元與銷售單價之間函數(shù)解析式;

當銷售單價為多少元時,公司每月能夠獲得最大利潤?最大利潤是多少?

根據(jù)工商部門規(guī)定,這種紀念品的銷售單價不得高于32如果公司要獲得每月不低于350萬元的利潤,那么制造這種紀念品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ACB中,∠ACB=90°,∠A=75°,點DAB的中點.將ACD沿CD翻折得到A′CD,連接A′B

1)求證:CDA′B;

2)若AB=4,求A′B2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點是線段的中點,過點的垂線,在射線上有一個動點(不與端點重合),連接,過點的垂線,垂足為點,在射線上取點,使得,已知

(1)時,求的度數(shù);

(2)過點垂直于直線于點,在點的運動過程中,的大小隨點的運動而變化,在這個變化過程中線段的長度是否發(fā)生變化?若不變,求出的長;若變化,請說明理由;

(3)如圖2,當時,設直線與直線相交于點,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為8,點P是邊AD的中點,點E是正方形ABCD的邊上一點,若是等腰三角形,則腰長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高身體素質,有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費方式如下:

普通消費:35/次;

白金卡消費:購卡280/張,憑卡免費消費10次再送2次;

鉆石卡消費:購卡560/張,憑卡每次消費不再收費.

以上消費卡使用年限均為一年,每位顧客只能購買一張卡,且只限本人使用.

(1)李叔叔每年去該健身中心健身6次,他應選擇哪種消費方式更合算?

(2)設一年內(nèi)去該健身中心健身x(x為正整數(shù)),所需總費用為y元,請分別寫出選擇普通消費和白金卡消費的yx的函數(shù)關系式;

(3)王阿姨每年去該健身中心健身至少18次,請通過計算幫助王阿姨選擇最合算的消費方式.

查看答案和解析>>

同步練習冊答案