【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2x3x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C

1)求直線(xiàn)AC的解析式;

2)點(diǎn)P是直線(xiàn)AC上方拋物線(xiàn)上的一動(dòng)點(diǎn)(不與點(diǎn)A,點(diǎn)C重合),過(guò)點(diǎn)PPDx軸交AC于點(diǎn)D,求PD的最大值;

3)將△BOC沿直線(xiàn)BC平移,點(diǎn)B平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)B′,點(diǎn)O平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)O′,點(diǎn)C平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)C′,點(diǎn)S是坐標(biāo)平面內(nèi)一點(diǎn),若以A,C,O′,S為頂點(diǎn)的四邊形是菱形,求出所有符合條件的點(diǎn)S的坐標(biāo).

【答案】1;(2;(3)(,)或(,)或()或()或(

【解析】

1,令y=0,則x=-1-6,故點(diǎn)A、B、C的坐標(biāo)分別為:(-6,0)、(-10)、(0,-3),然后用待定系數(shù)法即可求解;(2)設(shè)點(diǎn)Px,),則點(diǎn)Dx,),則PD=-=,然后配方法分析其最值,即可求解;(3)分AC是菱形的邊、AC是對(duì)角線(xiàn)兩種情況,分別求解即可.

解:(1)當(dāng)y=0時(shí),

解得:x=-1-6,

當(dāng)x=0時(shí),y=-3

∴點(diǎn)A、BC的坐標(biāo)分別為:(-6,0)、(-1,0)、(0,-3),

設(shè)直線(xiàn)AC的表達(dá)式為:

將點(diǎn)A、C的坐標(biāo)代入得:

解得:

∴直線(xiàn)AC的解析式為:

2)設(shè)點(diǎn)Px),則點(diǎn)Dx,

PD=-=

0,故PD有最大值為

3)設(shè)直線(xiàn)BC的表達(dá)式為:

將點(diǎn)B、C的坐標(biāo)代入得:

解得:

∴直線(xiàn)BC的解析式為:

①如圖34中,當(dāng)四邊形ACSO'是菱形時(shí),設(shè)ASCO′K,AC=AO′=3,

點(diǎn)O平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)O′,平移直線(xiàn)的k,

則設(shè)點(diǎn)O向左平移m個(gè)單位,則向上平移3m個(gè)單位,則點(diǎn)O′-m,3m),設(shè)點(diǎn)Sa,b),

∴(m+62+-3m2=32,
解得m=

O′,)或(,

由中點(diǎn)公式可得:K)或(,),

AK=KS,

S,)或(

②如圖56中,當(dāng)四邊形ACO'S是菱形時(shí),設(shè)CSAO′K,AC=CO′=3

∵點(diǎn)O平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)O′,平移直線(xiàn)的k,C0-3),設(shè)O′m,-3m),

m2+-3m+32=32,

解得m=,

O′)或(),

由中點(diǎn)公式可得:K)或(),

CK=KS,

S)或(

③如圖7中,當(dāng)四邊形ASCO′是菱形時(shí),SO垂直平分線(xiàn)段AC,

直線(xiàn)SO′的解析式為

,

解得 ,

O′

KS=KO′,

S

綜上所述,滿(mǎn)足條件的點(diǎn)S坐標(biāo)為(,)或(,)或()或()或(

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱(chēng)為點(diǎn)理想值,記作.如理想值

1)①若點(diǎn)在直線(xiàn)上,則點(diǎn)理想值等于_______

②如圖,的半徑為1.若點(diǎn)上,則點(diǎn)理想值的取值范圍是_______

2)點(diǎn)在直線(xiàn)上,的半徑為1,點(diǎn)上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;

3是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫(huà)出滿(mǎn)足條件的最大圓,并直接寫(xiě)出相應(yīng)的半徑的值.(要求畫(huà)圖位置準(zhǔn)確,但不必尺規(guī)作圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=,經(jīng)過(guò)點(diǎn)A1,3)、B0,1),過(guò)點(diǎn)Ax軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)C

1)求拋物線(xiàn)的表達(dá)式及其頂點(diǎn)坐標(biāo);

2)如圖,點(diǎn)GBC上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),分別過(guò)點(diǎn)GGHBC于點(diǎn)H、作GEx軸于點(diǎn)E,交BC于點(diǎn)F,在點(diǎn)G運(yùn)動(dòng)的過(guò)程中,GFH的周長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OAcm,OC8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線(xiàn)段OA上沿OA方向以每秒cm的速度勻速運(yùn)動(dòng),Q在線(xiàn)段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)用t的式子表示△OPQ的面積S;

(2)求證:四邊形OPBQ的面積是一個(gè)定值,并求出這個(gè)定值;

(3)當(dāng)△OPQ與△PAB和△QPB相似時(shí),拋物線(xiàn)yx 2bxc經(jīng)過(guò)B、P兩點(diǎn),過(guò)線(xiàn)段BP上一動(dòng)點(diǎn)My軸的平行線(xiàn)交拋物線(xiàn)于N,當(dāng)線(xiàn)段MN的長(zhǎng)取最大值時(shí),求直線(xiàn)MN把四邊形OPBQ分成兩部分的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘉善縣將開(kāi)展以珍愛(ài)生命,鐵拳護(hù)航為主題的交通知識(shí)競(jìng)賽,某校對(duì)參加選拔賽的若干名同學(xué)的成績(jī)按A,B,CD四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的頻數(shù)統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖

成績(jī)等級(jí)

頻數(shù)(人數(shù))

頻率

A

4

0.08

B

m

0.52

C

n

D

合計(jì)

1

1)求m   ,n   ;

2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)所對(duì)應(yīng)圓心角的度數(shù);

3“A等級(jí)4名同學(xué)中有3名男生和1名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全縣比賽,請(qǐng)用樹(shù)狀圖法或列表法求出恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老張用400元購(gòu)買(mǎi)了若干只種兔,老李用440元也購(gòu)買(mǎi)了相同只數(shù)的種兔,但單價(jià)比老張購(gòu)買(mǎi)的種兔的單價(jià)貴5元.

1)老張與老李購(gòu)買(mǎi)的種兔共有多少只?

2)一年后,老張養(yǎng)兔數(shù)比買(mǎi)入種兔數(shù)增加了2只,老李養(yǎng)兔數(shù)比買(mǎi)入種兔數(shù)的2倍少1只,兩人將兔子全部售出,則售價(jià)至少為多少元時(shí),兩人所獲得的總利潤(rùn)不低于960元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,A(﹣3,2),B01),將線(xiàn)段AB沿x軸的正方向平移nn0)個(gè)單位,得到線(xiàn)段AB恰好都落在反比例函數(shù)ym≠0)的圖象上.

1)用含n的代數(shù)式表示點(diǎn)A,B的坐標(biāo);

2)求n的值和反比例函數(shù)ym≠0)的表達(dá)式;

3)點(diǎn)C為反比例函數(shù)ym≠0)圖象上的一個(gè)動(dòng)點(diǎn),直線(xiàn)CAx軸交于點(diǎn)D,若CD2AD,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD的一邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

1)如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OPOA.求證:△OCP∽△PDA;

2)若圖1中△OCP與△PDA的面積比為14,求邊AB的長(zhǎng)

3)如圖2,在(2)的條件下,擦去折痕AO、線(xiàn)段OP,連接BP,動(dòng)點(diǎn)M在線(xiàn)段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且BN=PM,連接MN交與PB點(diǎn)F,作MEBP于點(diǎn)E,試問(wèn)當(dāng)點(diǎn)MN在移動(dòng)過(guò)程中,線(xiàn)段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線(xiàn)段EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)CD⊙O上,∠A=2∠BCD,點(diǎn)EAB的延長(zhǎng)線(xiàn)上,∠AED=∠ABC

1)求證:DE⊙O相切;

2)若BF=2,DF=,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案