精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是邊AB的中點,E、G分別是邊AC、BC上的一點,∠EMG=45°,AC與MG的延長線相交于點F.
(1)在不添加字母和線段的情況下寫出圖中一定相似的三角形,并證明其中的一對;
(2)連接結EG,當AE=3時,求EG的長.
分析:(1)因為△ABC是等腰直角三角形,從而可得到∠A=∠B=45°,再根據(jù)外角的性質得到∠AEM=∠BMG,從而可根據(jù)有兩組角相等的兩個三角形相似,得到△AEM∽△BMG,同理可證明△FEM∽△FMA.
(2)根據(jù)勾股定理可求得AB的長,從而可得到AM,BM的長,再根據(jù)相似三角形的判定及性質,根據(jù)相似比即可求得EG的長.
解答:精英家教網(wǎng)解:(1)一定相似的三角形:△AEM∽△BMG,△FEM∽△FMA,(2分)
以下證明△AEM∽△BMG
∵Rt△ABC中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°.(1分)
∵∠EMB=∠EMG+∠GMB=∠A+∠AEM,
∵∠EMG=45°,
∴∠AEM=∠BMG.(1分)
∴△AEM∽△BMG.(2分)

(2)∵在Rt△ABC中,∠ACB=90°,AC=BC=4,
∴AB=
AC2+BC2
=4
2
.(1分)
∵M為AB的中點,
∴AM=BM=2
2

∵△AME∽△BGM,
AE
BM
=
AM
BG
3
2
2
=
2
2
BG

BG=
8
3
.(2分)
CG=4-
8
3
=
4
3
,CE=4-3=1.(2分)
EG=
CE2+CG2
=
5
3
.(1分)
點評:此題主要考查學生對相似三角形的判定及性質和勾股定理等知識點的掌握情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知,在Rt△ABC中,∠C=90°,沿過B點的一條直線BE折疊這個三角形,使C點與AB邊上的一點D重合.
(1)當∠A滿足什么條件時,點D恰為AB的中點寫出一個你認為適當?shù)臈l件,并利用此條件證明D為AB的中點;
(2)在(1)的條件下,若DE=1,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D為AC上一點(不與A、C不精英家教網(wǎng)重合),過D作DQ⊥AC(DQ與AB在AC的同側);點P從D點出發(fā),在射線DQ上運動,連接PA、PC.
(1)當PA=PC時,求出AD的長;
(2)當△PAC構成等腰直角三角形時,求出AD、DP的長;
(3)當△PAC構成等邊三角形時,求出AD、DP的長;
(4)在運動變化過程中,△CAP與△ABC能否相似?若△CAP與△ABC相似,求出此時AD與DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠ACB=90°,sinB=
35
,D是BC上一點,DE⊥AB,垂足為E,CD=DE,AC+CD=9.求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,已知:在Rt△ABC中,∠ACB=90°,AC=4,BC=3,AM=AC,BN=BC.
求:(1)AB的長;(2)MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D.
求證:AD=
14
AB.

查看答案和解析>>

同步練習冊答案