【題目】如圖,A,B,C,D四點(diǎn)都在OO上,弧AC=弧BC,連接AB,CD、AD,∠ADC45°.

1)如圖1ABO的直徑;

2)如圖2,過(guò)點(diǎn)BBECD于點(diǎn)E,點(diǎn)F在弧AC上,連接BFCD于點(diǎn)G,∠FGC2BAD,求證:BA平分∠FBE

3)如圖3,在(2)的條件下,MNO相切于點(diǎn)M,交EB的延長(zhǎng)線于點(diǎn)N,連接AM,若2MAD+FBA135°,MNAB,EN26,求線段CD的長(zhǎng).

【答案】(1)詳見解析;(2)詳見解析;(3)34

【解析】

(1)根據(jù)直徑所對(duì)圓周角是直角即可解題;

(2)作輔助線,通過(guò)半徑相等得到等腰三角形,由已知的∠FGC2BAD得到B、G、O、D四點(diǎn)共圓,推出∠ODE=∠OBG即可解題;

(3)作輔助線,通過(guò)直徑所對(duì)圓周角是直角得到∠ACB90°,根據(jù)2MAD+FBA135°,得到AMDM,接著證明△ADR是等腰直角三角形,△ACR≌△CBEAAS),四邊形OEQM是矩形,再△EQN是等腰直角三角形,△OER是等腰直角三角形,最后通過(guò)勾股定理即可解題.

解(1)如圖1,連接BD

∴∠BDC=∠ADC45°,

∴∠ADB90°,

AB是圓O的直徑.

2)如圖2,連接OG、OD、BD

OAODOB,

∴∠OAD=∠ODA,∠OBD=∠ODB,

∴∠DOB=∠OAD+ODA2BAD

∵∠FGC2BAD,

∴∠DOB=∠FGC=∠BGD

B、GO、D四點(diǎn)共圓,

∴∠ODE=∠OBG,

BECD,∠BDC45°,

∴∠EBD45°=∠EDB,

∴∠OBE=∠ODE=∠OBG

BA平分∠FBE

3)如圖3,連接ACBC、CO、DOEO、BD

ACBC

ACBC,

AB為直徑,

∴∠ACB90°,∠CAB=∠CBA45°,COAB,

延長(zhǎng)CO交圓O于點(diǎn)K,則∠DOK=∠OCD+ODC2ODC2OBE2FBA,

連接DM、OM,則∠MOD2MAD,

2MAD+FBA135°,

∴∠MOD+FBA135°,

2MOD+2FBA270°,

2MOD+DOK270°,

∵∠AOM+DOM+KOK270°,

∴∠AOM=∠DOM,

AMDM

連接MO并延長(zhǎng)交ADH,則∠MHA=∠MHD90°,AHDH

設(shè)MHBC交于點(diǎn)R,連接AR,則ARDR,

∵∠ADC45°,

∴∠ARD=∠ARC90°,△ADR是等腰直角三角形,

∴∠BRH=∠ARH45°

∵∠ACR+BCE=∠BCE+CBE90°,

∴∠ACR=∠CBE

∴△ACR≌△CBEAAS),

CRBEED,

EQMNQ,則∠EQN=∠EQM90°,

連接OE,則OE垂直平分BD,

OEADMN,

∴四邊形OEQM是矩形,

OMEQ,OEMQ

延長(zhǎng)DBMN于點(diǎn)P,

∵∠PBN=∠EBD45°,

∴∠BNP45°,

∴△EQN是等腰直角三角形,

EQQNEN13,

OAOBOCODOM13,AB2OA26,

BCOC26

MNAB20,

OEMQMNQN20137,

∵∠ORE45°,∠EOR90°,

∴△OER是等腰直角三角形,

REOE14,

設(shè)BECRx,則CE14+x,

RtCBE中:BC2CE2+BE2

262=(x+142+x2,解得x10

CDCR+RE+DE10+14+1034

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交xy軸于點(diǎn)A、B,拋物線經(jīng)過(guò)點(diǎn)AB,點(diǎn)P為第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn).

1)求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

2)如圖1所示,過(guò)點(diǎn)PPM∥y軸,分別交直線AB、x軸于點(diǎn)CD,若以點(diǎn)PB、C為頂點(diǎn)的三角形與以點(diǎn)AC、D為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo);

3)如圖2所示,過(guò)點(diǎn)PPQ⊥AB于點(diǎn)Q,連接PB,當(dāng)△PBQ中有某個(gè)角的度數(shù)等于∠OAB度數(shù)的2倍時(shí),請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)外,連接,,且

1)若,求的度數(shù);

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某童裝店購(gòu)進(jìn)一批20/件的童裝,由銷售經(jīng)驗(yàn)知,每天的銷售量y(件)與銷售單價(jià)x(元)之間存在如圖的一次函數(shù)關(guān)系.

1)求yx之間的函數(shù)關(guān)系;

2)當(dāng)銷售單價(jià)定為多少時(shí),每天可獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2-x-m+1)=0有兩個(gè)不相等的實(shí)數(shù)根

1)求m的取值范圍;

2)若m為符合條件的最小整數(shù),求此方程的根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b20②4a+c2b;③3b+2c0;④mam+b+bam≠﹣1),其中正確結(jié)論的個(gè)數(shù)是( )

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的點(diǎn)A(0,﹣2)、點(diǎn)B(3m,4m+1)(m﹣1),點(diǎn)C(6,2),則對(duì)角線BD的最小值是( 。

A. 3 B. 2 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等邊中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿邊以每秒1個(gè)單位的速度向終點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿著方向運(yùn)動(dòng).連結(jié),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間秒.

1)用含的代數(shù)式表示線段的長(zhǎng).

2)當(dāng)時(shí),求的值.

3)若的面積為,求之間的函數(shù)關(guān)系式.

4)如圖②,當(dāng)點(diǎn)、之間時(shí),連結(jié)被分割成、、,當(dāng)其中的某兩個(gè)三角形面積相等時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三名快遞員某天的工作情況如圖所示,其中點(diǎn),,的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員上午派送快遞所用的時(shí)間和件數(shù);點(diǎn),,的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員下午派送快遞所用的時(shí)間和件數(shù).有如下三個(gè)結(jié)論:①上午派送快遞所用時(shí)間最短的是甲;②下午派送快遞件數(shù)最多的是丙;③在這一天中派送快遞總件數(shù)最多的是乙.上述結(jié)論中,所有正確結(jié)論的序號(hào)是(

A. ①②B. ①③C. D. ②③

查看答案和解析>>

同步練習(xí)冊(cè)答案