【題目】如圖1,在中, ,邊的長為邊的長為,在此三角形內有一個矩形;點分別在上,設的長為,矩形的面積為(單位: )
(1)當等于30時,求與的函數(shù)關系式:(不要求寫出自變量的取值范圍)
(2)在(1)的條件下,矩形的面積能否為?請說明理由?
(3)若與的函數(shù)圖象如圖2所示,求此時的值
【答案】(1);(2)不能為180,見詳解;(3)h=40
【解析】
(1)根據(jù)AC的長,可用AD表示出CD,根據(jù)∠A的正切值,可用AD表示出DE,由此可得出關于y,x的函數(shù)關系式.
(2)將y=180代入(1)的函數(shù)式中,如果得出的方程有解,就說明矩形的面積能夠成為180cm2,反之則不能.
(3)根據(jù)(1)的解題思路不難得出含h的關于x,y的函數(shù)關系式,然后將圖象中的(10,150)的坐標代入拋物線的解析式中,即可求出h的值.
解:(1)∵AC=30,AD=x,
∴CD=30-x.
∵四邊形CFED為矩形,
∴DE∥BC.
∴,即.
∴DE=,
∴y=(30-x).
即y=+20x.
(2)∵=150,
∴y的最大值為150.
∵150<180,
∴矩形CFED的面積不能為180cm2.
(3)由圖象可知,當x=10時,y=150.
當x=10時,CD=h-10,DE=,
∴(h-10)=150,
解得h=40.
經檢驗h=40是方程的解.
∴h=40.
科目:初中數(shù)學 來源: 題型:
【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達圖書館恰好用了35分鐘.兩人之間的距離y(m)與小雪離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示,則當小松剛到家時,小雪離圖書館的距離為____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,∠ADB=∠CDB=∠BAC=45°,結論:①∠ABC=90°,②AB=BC,③AD2+DC2=2AB2,④AD+DC=BD,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點A的坐標為(﹣2,3),點B的坐標為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1中, ,點從點出發(fā)以的速度沿折線運動,點從點出發(fā)以的速度沿運動,兩點同時出發(fā),當某一點運動到點時,兩點同時停止運動.設運動時間為,的面積為),關于的函數(shù)圖象由兩段組成,如圖2所示,有下列結論:①;②:③圖象段的函數(shù)表達式為;④面積的最大值為8,其中正確的個數(shù)有( )個
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網格圖中建立平面直角坐標系,一條圓弧經過格點、、,若該圓弧所在圓的圓心為點,請你利用網格圖回答下列問題:
(1)圓心的坐標為_____;
(2)若扇形是一個圓錐的側面展開圖,求該圓錐底面圓的半徑長(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店在兩周內,將標價為10元/斤的某種水果,經過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.
(1)求該種水果每次降價的百分率;
(2)從第一次降價的第1天算起,第天(為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.
時間(天) | ||
售價(元/斤) | 第1次降價后的價格 | 第2次降價后的價格 |
銷量(斤) | ||
儲存和損耗費用(元) |
已知該種水果的進價為4.1元/斤,設銷售該水果第(天)的利潤為(元),求與()之間的函數(shù)解析式,并求出第幾天時銷售利潤最大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點,與y軸交于點C,點O為坐標原點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,點D為直線AE上方拋物線上的一點
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ADE面積的最大值和此時點D的坐標;
(3)將△AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解全校學生上學的交通方式,該校九年級(8)班的4名同學聯(lián)合設計了一份調查問卷,對該校部分學生進行了隨機調查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式) 設置選項,要求被調查同學從中單選.并將調查結果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息, 解答下列問題:
(1)本次接受調查的總人數(shù)是 人, 并把條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,“步行”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這4名同學中有2名女同學,要從中選兩名同學匯報調查結果.請你用列表法或畫樹狀圖的方法, 求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com