【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E分別在AB、AC上,AE=BD,∠B=∠CED,AE=3,DE=,則線段CE的長(zhǎng)為_____.
【答案】5
【解析】
過(guò)點(diǎn)C作CF//DE交AB的延長(zhǎng)線于點(diǎn)F,設(shè)CE=x,CF=y,由DE//FC可得,可表示BF=.證明△ADE∽△CFB,可得,得出x與y的關(guān)系式①,可得,則可得出x與y的關(guān)系式②,聯(lián)立①②可解出x得出答案.
解:過(guò)點(diǎn)C作CF//DE交AB的延長(zhǎng)線于點(diǎn)F,
∵AB=AC,AE=BD,
∴AD=CE,
設(shè)CE=x,CF=y,
∵DE//FC,
∴,
∴,
∴BF=.
∵∠ABC=∠CED,
∴∠AED=∠CBF,
∵DE//CF,
∴∠ADE=∠BFC,
∴△ADE∽△CFB,
∴,
∴.
∴①
∵DE//CF,
∴△ADE∽△AFC,
∴,
∴,
∴②.
由①②可得,=.
整理得x2﹣3x﹣10=0.
解得x=5,x=﹣2(舍去).
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷售商準(zhǔn)備在南充采購(gòu)一批絲綢,經(jīng)調(diào)查,用10000元采購(gòu)A型絲綢的件數(shù)與用8000元采購(gòu)B型絲綢的件數(shù)相等,一件A型絲綢進(jìn)價(jià)比一件B型絲綢進(jìn)價(jià)多100元.
(1)求一件A型、B型絲綢的進(jìn)價(jià)分別為多少元?
(2)若銷售商購(gòu)進(jìn)A型、B型絲綢共50件,其中A型的件數(shù)不大于B型的件數(shù),且不少于16件,設(shè)購(gòu)進(jìn)A型絲綢m件.
①求m的取值范圍.
②已知A型的售價(jià)是800元/件,銷售成本為2n元/件;B型的售價(jià)為600元/件,銷售成本為n元/件.如果50≤n≤150,求銷售這批絲綢的最大利潤(rùn)w(元)與n(元)的函數(shù)關(guān)系式(每件銷售利潤(rùn)=售價(jià)﹣進(jìn)價(jià)﹣銷售成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點(diǎn)O,則線段AO的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具商店銷售功能相同的兩種品牌的計(jì)算器,購(gòu)買(mǎi)2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156元;購(gòu)買(mǎi)3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元。
(1)求這兩種品牌計(jì)算器的單價(jià);
(2)學(xué)校開(kāi)學(xué)前夕,該商店對(duì)這兩種計(jì)算器開(kāi)展了促銷活動(dòng),具體辦法如下:A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器5個(gè)以上超出部分按原價(jià)的七折銷售。設(shè)購(gòu)買(mǎi)個(gè)x個(gè)A品牌的計(jì)算器需要y1元,購(gòu)買(mǎi)x個(gè)B品牌的計(jì)算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購(gòu)買(mǎi)同一品牌的計(jì)算器,若購(gòu)買(mǎi)計(jì)算器的數(shù)量超過(guò)5個(gè),購(gòu)買(mǎi)哪種品牌的計(jì)算器更合算?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說(shuō)明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在 等級(jí);
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿BC運(yùn)動(dòng),速度為4cm/s.設(shè)P、Q兩點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為ts(0<t<4),當(dāng)△QBP與△ABC相似時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八(1)班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
(Ⅰ)如圖5-1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);
(Ⅱ)如圖5-2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.
閱讀后1回答下列問(wèn)題:
(1)方案(Ⅰ)是否可行?說(shuō)明理由.
(2)方案(Ⅱ)是否可行?說(shuō)明理由.
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°, 方案(Ⅱ)是否成立? .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com