【題目】如圖,B是線段AD上一動(dòng)點(diǎn),沿A→D→A以2cm/s的速度往返運(yùn)動(dòng)1次,C是線段BD的中點(diǎn),AD=10cm,設(shè)點(diǎn)B運(yùn)動(dòng)時(shí)間為t秒(0≤t≤10).
(1)當(dāng)t=2時(shí),①AB= cm.②求線段CD的長(zhǎng)度.
(2)①點(diǎn)B沿點(diǎn)A→D運(yùn)動(dòng)時(shí),AB= cm;
②點(diǎn)B沿點(diǎn)D→A運(yùn)動(dòng)時(shí),AB= cm.(用含t的代數(shù)式表示AB的長(zhǎng))
(3)在運(yùn)動(dòng)過程中,若AB中點(diǎn)為E,則EC的長(zhǎng)是否變化,若不變,求出EC的長(zhǎng);若發(fā)生變化,請(qǐng)說明理由.
【答案】(1)CD=3cm;(2)①2tcm;②20﹣2tcm;(3)EC=5cm.
【解析】
(1)①根據(jù)速度乘以時(shí)間等路程,可得答案;②根據(jù)線段的和差,可得BD的長(zhǎng),根據(jù)線段中點(diǎn)的性質(zhì),可得答案;
(2)①根據(jù)速度乘以時(shí)間等路程,可得答案;
②根據(jù)線段的和差,可得AB的長(zhǎng);
(3)根據(jù)線段中點(diǎn)的性質(zhì),可得BE的長(zhǎng),BC的長(zhǎng),根據(jù)線段的和差,可得答案.
解:(1)當(dāng)t=2時(shí),①AB=2×2=4cm;
②BD=AD﹣AB=10﹣4=6cm,
由C是線段BD的中點(diǎn),得
CD=BD=×6=3cm;
(2))①點(diǎn)B沿點(diǎn)A→D運(yùn)動(dòng)時(shí),AB=2tcm;
②點(diǎn)B沿點(diǎn)D→A運(yùn)動(dòng)時(shí),AB=20﹣2tcm;
(3)在運(yùn)動(dòng)過程中,若AB中點(diǎn)為E,則EC的長(zhǎng)不變,
由AB中點(diǎn)為E,C是線段BD的中點(diǎn),得
BE=AB,BC=BD.
EC=BE+BC=(AB+BD)=×10=5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,是邊上一點(diǎn),延長(zhǎng)到點(diǎn),使得,連接,過點(diǎn)作的垂線,交的垂直平分線于點(diǎn),連接.
(1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),證明:;
(2)如圖2,當(dāng)點(diǎn)不與,兩點(diǎn)重合時(shí),(1)中的結(jié)論是否還成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如∠MON=30°、OP=6,點(diǎn)A、B分別在OM、ON上;(1)請(qǐng)?jiān)趫D中畫出周長(zhǎng)最小的△PAB(保留畫圖痕跡);(2)請(qǐng)求出(1)中△PAB的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請(qǐng)判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖擺放,點(diǎn)C在EF上,AC經(jīng)過點(diǎn)D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,則∠CDF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c滿足|a-|++(c-)2=0.
(1)求a,b,c的值;
(2)試問以a,b,c為邊能否構(gòu)成三角形?若能,求出其周長(zhǎng);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DE∥BC( )
∴∠2= ( )
∵∠2=∠3(已知)
∴∠3=
∴CD∥FH( )
∴∠BDC=∠BHF( )
又∵FH⊥AB(已知)
∴ ( )
∵CD∥FH
∴∠BHF=∠BDC=90°( )
即CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)50臺(tái)機(jī)器,現(xiàn)在生產(chǎn)600臺(tái)機(jī)器所需要的時(shí)間與原計(jì)劃生產(chǎn)450臺(tái)機(jī)器所需要的時(shí)間相同.
(1)原計(jì)劃平均每天生產(chǎn)多少臺(tái)機(jī)器?
(2)若該工廠要在不超過5天的時(shí)間,生產(chǎn)1100臺(tái)機(jī)器,則平均每天至少還要再多生產(chǎn)多少臺(tái)機(jī)器?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中∠A=30°,E是AC邊上的點(diǎn),先將△ABE沿著BE翻折,翻折后△ABE的AB邊交AC于點(diǎn)D,又將△BCD沿著BD翻折,C點(diǎn)恰好落在BE上,此時(shí)∠CDB=80°,則原三角形的∠B為 _____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com