【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BEAD于點(diǎn)F,AB=6cm,AD=8cm.

1)求證:BDF是等腰三角形;

2)如圖2,過點(diǎn)DDGBE,交BC于點(diǎn)G,連結(jié)FGBD于點(diǎn)O.判斷四邊形FBGD的形狀,并說明理由.

3)在(2)的條件下,求FG的長(zhǎng).

【答案】(1)見解析;(2)見解析;(3).

【解析】

1)根據(jù)兩直線平行內(nèi)錯(cuò)角相等及折疊特性判斷;
2)根據(jù)已知矩形性質(zhì)及第一問證得鄰邊相等判斷;
3)根據(jù)折疊特性設(shè)未知邊,構(gòu)造勾股定理列方程求解.

1)如圖1,根據(jù)折疊,∠DBC=DBE,又ADBC,

∴∠DBC=ADB, ∴∠DBE=ADB,

DF=BF,∴△BDF是等腰三角形;

2)∵四邊形ABCD是矩形 ADBC

FDBG 又∵DGBE

∴四邊形BFDG是平行四邊形

DF=BF

∴四邊形BFDG是菱形;

3)設(shè)DFxcm,則BF=xcm,AF(8-x)cm

RtABE中,由勾股定理得,62+8-x2x2,解得x=,

∵四邊形ABCD是矩形,

∴∠A=90°∴BD==10,

∵四邊形BGDF是菱形,

∴BD⊥FG,

10×FG×,

FG,FG的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,.

1)如果、分別是的中點(diǎn),是對(duì)角線上的點(diǎn),,則的長(zhǎng)為________;

2)如果分別是、上的點(diǎn),,是對(duì)角線上的點(diǎn).下列判斷正確的是_____

①在上存在無數(shù)組,,使得四邊形是平行四邊形;

②在上存在無數(shù)組,,使得四邊形是矩形;

③在上存在無數(shù)組,,使得四邊形是菱形;

④當(dāng)時(shí),存在,使得四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,點(diǎn)BC分別在直線上,點(diǎn)A,Dx軸上兩點(diǎn).

1)若此正方形邊長(zhǎng)為2,k=_______.

2)若此正方形邊長(zhǎng)為a,k的值是否會(huì)發(fā)生變化?若不會(huì)發(fā)生變化,請(qǐng)說明理由;若會(huì)發(fā)生變化,求出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,觀察每個(gè)正多邊形中的變化情況,解答下列問題:

……

(1)將下面的表格補(bǔ)充完整:

正多邊形的邊數(shù)

3

4

5

6

……

的度數(shù)

_________

_________

_________

_________

……

_________

(2)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中的?若存在,寫出的值;若不存在,請(qǐng)說明理由.

(3)根據(jù)規(guī)律,是否存在一個(gè)正邊形,使其中的?若存在,寫出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為( )

A. 2 B. 8 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在平面直角坐標(biāo)系xOy中,三角形ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 個(gè)單位長(zhǎng)度,再向左平移 個(gè)單位長(zhǎng)度得到三角形 ,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為 ,,.

(1)寫出點(diǎn) , 的坐標(biāo);

(2)在圖中畫出平移后的三角形 ;

(3)三角形 的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為宣傳66日世界海洋日,某校八年級(jí)舉行了主題為珍惜海洋資源,保護(hù)海洋生物多樣性的知識(shí)競(jìng)賽活動(dòng).為了解全年級(jí)500名學(xué)生此次競(jìng)賽成績(jī)(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并繪制出如下不完整的統(tǒng)計(jì)表(1)和統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)圖表信息解答以下問題:

1)本次調(diào)查一共隨機(jī)抽取了個(gè)參賽學(xué)生的成績(jī);

2)表1a ;

3)所抽取的參賽學(xué)生的成績(jī)的中位數(shù)落在的組別 ;

4)請(qǐng)你估計(jì),該校九年級(jí)競(jìng)賽成績(jī)達(dá)到90分以上(90)的學(xué)生約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,EAB上一點(diǎn),且AE=2,MAD上一動(dòng)點(diǎn)(不與A、D重合),AM=x,連結(jié)EM并延長(zhǎng)交CD的延長(zhǎng)線于F,過MMG⊥EF交直線BC于點(diǎn)G,連結(jié)EG、FG.

(1)如圖1,若MAD的中點(diǎn),求證:①△AEM≌△DFM;②△EFG是等腰三角形;

(2)如圖2,當(dāng)x為何值時(shí),點(diǎn)G與點(diǎn)C重合?

(3)當(dāng)x=3時(shí),求△EFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

(1)求證:△BCE≌△DCF;

(2)求證:AB+AD=2AE.

查看答案和解析>>

同步練習(xí)冊(cè)答案