【題目】如圖,四邊形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四邊形ABCD的面積.
【答案】90
【解析】試題分析:連接AC,過點(diǎn)C作CE⊥AB于點(diǎn)E,在Rt△ACD中根據(jù)勾股定理求得AC的長(zhǎng),再由等腰三角形的三線合一的性質(zhì)求得AE的長(zhǎng),在Rt△CAE中,根據(jù)勾股定理求得CE的長(zhǎng),根據(jù)S四邊形ABCD=S△DAC+S△ABC即可求得四邊形ABCD的面積.
試題解析:
連接AC,過點(diǎn)C作CE⊥AB于點(diǎn)E.
∵AD⊥CD,
∴∠D=90°.
在Rt△ACD中,AD=5,CD=12,
AC=.
∵BC=13,
∴AC=BC.
∵CE⊥AB,AB=10,
∴AE=BE=AB=.
在Rt△CAE中,
CE=.
∴S四邊形ABCD=S△DAC+S△ABC=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C是⊙O上的三點(diǎn),AB∥OC.
(1)求證:AC平分∠OAB;
(2)過點(diǎn)O作OE⊥AB于點(diǎn)E,交AC于點(diǎn)P.若AB=2,∠AOE=30°,求PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計(jì)他們平均每天的課外閱讀時(shí)間/(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計(jì)圖表.
根據(jù)圖表中提供的信息,回答下列問題:
(1)a=_____,b=_____;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若該校共1 000名學(xué)生,估計(jì)有多少學(xué)生平均每天的課外閱讀時(shí)間不少于50min?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】榮慶公司計(jì)劃從商店購買同一品牌的臺(tái)燈和手電筒,已知購買一個(gè)臺(tái)燈比購買一個(gè)手電筒多用20元,若用400元購買臺(tái)燈和用160元購買手電筒,則購買臺(tái)燈的個(gè)數(shù)是購買手電筒個(gè)數(shù)的一半.
(1)求購買該品牌一個(gè)臺(tái)燈、一個(gè)手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個(gè)該品牌臺(tái)燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺(tái)燈個(gè)數(shù)的2倍還多8個(gè),且該公司購買臺(tái)燈和手電筒的總費(fèi)用不超過670元,那么榮慶公司最多可購買多少個(gè)該品牌臺(tái)燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題:
(1)(﹣1)2018﹣2(π﹣1)0+(﹣)﹣2
(2)(2a﹣4)(a+5)﹣2(a﹣10)
(3)(2x+3y)(﹣2x+3y)﹣(x﹣3y)2
(4)(4x3y﹣6x2y2+12xy3)÷2xy
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小凡與小光從學(xué)校出發(fā)到距學(xué)校5千米的圖書館看書,小光直接去圖書館, 小凡途中從路邊超市買了一些學(xué)習(xí)用品,如圖反應(yīng)了他們倆人離開學(xué)校的路程s(千米)與時(shí)間t(分鐘)的關(guān)系,請(qǐng)根據(jù)圖象提供的信息回答問題:
(1) 是描述小凡的運(yùn)動(dòng)過程(填或);
(2)小凡和小光先出發(fā)的是 ,先出發(fā)了 分鐘;
(3)小凡與小光先到達(dá)圖書館的是 ,先到了 分鐘;
(4)求小凡與小光從學(xué)校到圖書館的平均速度各是多少?(不包括中間停留的時(shí)間)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y= 經(jīng)過點(diǎn)A(1,2),過點(diǎn)A作y軸的垂線,垂足為B,交雙曲線y=﹣ 于點(diǎn)C,直線y=m(m≠0)分別交雙曲線y=﹣ 、y= 于點(diǎn)P、Q.
(1)求k的值;
(2)若△OAP為直角三角形,求點(diǎn)P的坐標(biāo);
(3)△OCQ的面積記為S△OCQ , △OAP的面積記為S△OAP,試比較S△OCQ與S△OAP的大小(直接寫出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=∠D.點(diǎn)EF分別在AB、CD上.連接AC,分別交DE、BF于G、H.求證:∠1+∠2=180°
證明:∵AB∥CD,
∴∠B=_____._____
又∵∠B=∠D,
∴_____=_____.(等量代換)
∴_____∥_____._____
∴∠l+∠2=180°._____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com