【題目】綜合題
(1)如圖①, 的內(nèi)角 的平分線與外角 的平分線相交于 點(diǎn), ,求 的度數(shù).
(2)如圖,四邊形 中,設(shè) , , 為四邊形 的內(nèi)角 與外角 的平分線所在直線相交而形成的銳角.
①如圖②,若 ,求 的度數(shù).(用 、 的代數(shù)式表示)
【答案】
(1)解:∵BP 平分∠ABC,CP 平分∠ACD
∴∠ABC=2∠PBC ,∠ACD=2∠PCD
∵∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC
∴2∠PCD=∠A+2∠PBC
∴2(∠P+∠PBC)=∠A+2∠PBC
∴∠P=
∴∠P=20°
(2)解:延長BA、CD交于點(diǎn)F,由(1)知∠P=
∴ =
②如圖③,若 ,請?jiān)趫D③中畫出 ,并求得 .(用 、 的代數(shù)式表示)
【解析】(1)根據(jù)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和,求出∠ P的度數(shù);(2)由(1)的結(jié)論得到∠P與α、β的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=8,點(diǎn)E,F(xiàn)分別在AB,AD上,且AE=AF,過點(diǎn)E作EG∥AD交CD于點(diǎn)G,過點(diǎn)F作FH∥AB交BC于點(diǎn)H,EG與FH交于點(diǎn)O.當(dāng)四邊形AEOF與四邊形CGOH的周長之差為12時(shí),AE的值為( )
A.6.5
B.6
C.5.5
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AB=2AD.
(1)作AE平分∠BAD交DC于E(尺規(guī)作圖,保留作圖痕跡);
(2)在(1)的條件下,連接BE,判定△ABE的形狀(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市的出租車的起步價(jià)為10元(行駛不超過3千米),以后每增加1千米,加價(jià)1.8元,現(xiàn)在某人乘出租車行駛P千米的路程(P>3)所需費(fèi)用是( )
A.10+1.8P
B.1.8P
C.10﹣1.8P
D.10+1.8(P﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是AD、BC的中點(diǎn),P、Q分別是BM、DN的中點(diǎn).
(1)求證:△MBA≌△NDC;
(2)求證:四邊形MPNQ是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)國務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房的建設(shè)力度.2014年市政府共投資2億元人民幣建設(shè)了廉租房8萬平方米,預(yù)計(jì)到2016年底三年共累計(jì)投資9.5億元人民幣建設(shè)廉租房.若在這兩年內(nèi)每年投資的增長率相同.
(1)求每年市政府投資的增長率;
(2)若這兩年內(nèi)的建設(shè)成本不變,求到2016年底共建設(shè)了多少萬平方米的廉租房?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=mx+n與y= ,其中m≠0,n≠0,那么它們在同一坐標(biāo)系中的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com