在如圖所示的平面直角坐標(biāo)系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點(diǎn)A(1,3),且點(diǎn)B坐標(biāo)為(0,2),直線AB交x軸負(fù)半軸于點(diǎn)C,直線 AD交x軸正半軸于點(diǎn)D.
(1)求直線AB的函數(shù)解析式;
(2)根據(jù)圖象直接回答,不等式k1x+b1>k2x+b2的解集;
(3)若點(diǎn)M為x軸一動點(diǎn),當(dāng)點(diǎn)M在什么位置時(shí),使AM+BM的值最?求出此時(shí)點(diǎn)M的坐標(biāo).
分析:(1)由y=k1x+b1與直線AD:y=k2x+b2相交于點(diǎn)A(1,3),且點(diǎn)B坐標(biāo)為(0,2),利用待定系數(shù)法即可求得直線AB的函數(shù)解析式;
(2)觀察圖象可得:當(dāng)x>1時(shí),不等式k1x+b1>k2x+b2
(3)首先求得點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′的坐標(biāo),直線A′B與x軸的交點(diǎn),即是點(diǎn)M,然后利用待定系數(shù)法求得直線A′B的解析式,繼而求得點(diǎn)M的坐標(biāo).
解答:解(1)∵直線AB:y=k1x+b1過點(diǎn)(1,3),(0,2),
k1+b1=3
b1=2

∴解得:k1=1,b1=2,…(2分)
∴直線AB解析式為:y=x+2;…(3分)

(2)由圖得:不等式k1x+b1>k2x+b2的解集為:x>1;…(6分)

(3)點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′(1,-3).
連接A′B,交x軸于點(diǎn)M,此時(shí)AM+BM的值最小.
設(shè)直線A′B解析式為:y=kx+b,
k+b=-3
b=2

解得:k=-5,b=2,…(8分)
直線A′B解析式為:y=-5x+2,
當(dāng)y=0,x=
2
5
,
∴點(diǎn)M(
2
5
,0).…(10分)
點(diǎn)評:此題考查了待定系數(shù)法求一次函數(shù)、一次函數(shù)的圖象以及距離最短問題.此題難度適中,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、格點(diǎn)△ABC在如圖所示的平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(1,1).
(1)畫出△ABC向左平移3的單位長度的圖形△A1B1C1,再以原點(diǎn)O為位似中心,將△A1B1C1放大到兩倍(即新圖與原圖的相似比為2),在所給的方格圖中畫出所得的圖形△A2B2C2
(2)點(diǎn)A1的坐標(biāo)為
(-1,3)
,在△A1B1C1內(nèi)有一點(diǎn)M(a,b),則點(diǎn)M在△A2B2C2中的對應(yīng)點(diǎn)N的坐標(biāo)為
(2a,2b)或(-2a,-2b)
.(橫縱坐標(biāo)可用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)在如圖所示的平面直角坐標(biāo)系中,先畫出△OAB關(guān)于y軸對稱的圖形,再畫出△OAB繞點(diǎn)O旋轉(zhuǎn)180°后得到的圖形.
(2)先閱讀后作答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說明完全平方公式,實(shí)際上還有一些等式也可以用這種方式加以說明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用圖1的面積關(guān)系來說明.
①根據(jù)圖2寫出一個(gè)等式
(a+2b)(2a+b)=2a2+5ab+2b2

②已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請你畫出一個(gè)相應(yīng)的幾何圖形加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、在如圖所示的平面直角坐標(biāo)系中,描出點(diǎn)A(-2,1),B(3,1),C(-2,-2),D(3,-2)四個(gè)點(diǎn).
(1)線段AB、CD有什么關(guān)系?并說明理由;
(2)順次連接A、B、C、D四點(diǎn)組成的圖形,你認(rèn)為它像什么?請寫出一個(gè)具體名稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于原點(diǎn)對稱的△A1B1C1
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2
(3)請直接寫出△AB2A1的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

Rt△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1
(2)畫出將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的△A2B2C2
(3)寫出點(diǎn)B1、A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案