如圖,在Rt△ABC中,CD是斜邊AB上的中線,已知CD=2,AC=3,則BC的長(zhǎng)是______.
在Rt△ABC中,CD是斜邊AB上的中線,CD=2,
∴AB=2CD=4.
∴BC=
AB2-AC2
=
42-32
=
7

故答案為:
7
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB=AC,∠BAC=120°,點(diǎn)D在BC上,DB=DA=4,那么BC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下四個(gè)結(jié)論:①AE=CF;②tan∠PEF=
3
3
;③S△EPF的最小值為
1
2
;④S四邊形AEPF=1.當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直角三角形斜邊上的高與中線分別是5cm和7cm,則它的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,以等腰三角形AOB的斜邊為直角邊向外作第2個(gè)等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個(gè)等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,則第n個(gè)等腰直角三角形的面積Sn=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,D、E、F分別為BC、AC、AB的中點(diǎn),AH⊥BC于點(diǎn)H,F(xiàn)D=10cm,則HE的值為( 。
A.20cmB.16cmC.10cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,等腰直角△ABC,BC=9,從中裁剪正方形DEFG,其中邊DE落在斜邊BC上,點(diǎn)F、G分別在直角邊AC、AB上.按照同樣的方式在余下的三個(gè)等腰直角三角形中繼續(xù)裁剪,如此一直操作下去,若要求裁剪出的正方形的邊長(zhǎng)大于1,那么共可剪出幾個(gè)正方形?( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,已知點(diǎn)D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M為EC的中點(diǎn).
(1)求證:△BMD為等腰直角三角形.(思路點(diǎn)撥:考慮M為EC的中點(diǎn)的作用,可以延長(zhǎng)DM交BC于N,構(gòu)造△CMN≌△EMD,于是ED=CN=DA,即可以證明△BND也是等腰直角三角形,且BM是等腰三角形底邊的中線就可以了.)請(qǐng)你完成證明過(guò)程.
(2)將△ADE繞點(diǎn)A再逆時(shí)針旋轉(zhuǎn)90°時(shí)(如圖②所示位置),△BMD為等腰直角三角形的結(jié)論是否仍成立?若成立,請(qǐng)證明:若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,想測(cè)量旗桿AB的高,在C點(diǎn)測(cè)得∠ACB=30°,然后在地面上沿CD方向從C點(diǎn)到D點(diǎn),使∠ACD=∠ACB,DA⊥AC于點(diǎn)A,此時(shí)測(cè)得CD=36m,則旗桿高(  )
A.9mB.18mC.36mD.72m

查看答案和解析>>

同步練習(xí)冊(cè)答案