【題目】如圖,已知□AOBC的頂點O(0,0),,點B12,0),按以下步驟作圖:①以點O為圓心、適當長度為半徑作弧,分別交OA、OB于點D,E;②分別以點DE為圓心、大于的長為半徑作弧,兩弧∠AOB在內(nèi)交于點F;③作射線OF,交邊AC于點G,則CG的長為(

A.6B.7C.8D.9

【答案】B

【解析】

如圖,先利用勾股定理計算出OA=5,再利用基本作圖和平行線的性質(zhì)得到∠AOG=AGO,則AG=AO=5,從而得到G點坐標,即可得出CG的長.

如圖,

AOBC的頂點A的坐標為(-3,4),
ACOBOA= =5,AM=3,OM=4,
由作法得OG平分∠AOB,
∴∠AOG=BOG,
ACOB,
∴∠AGO=BOG,
∴∠AOG=AGO,
AG=AO=5
MG=5-3=2,
G點坐標為(2,4).

∵點B12,0),A點坐標為(-3,4).

C的坐標為(9,4

CG的長為9-2=7,
故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB,AD、CE相交于點P

(1) 求∠CPD的度數(shù)

(2) 若AE=3,CD=7,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校組織的學習強國閱讀知識競賽中,有901班和902班兩個班參加比賽且人數(shù)相同,成績分為A,BC,D四個等級,其中相應(yīng)等級的得分依次記為100分,90分,80分和70分.年級組長李老師將901班和902班的成績進行整理并繪制成如下的統(tǒng)計圖:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

B級及以上人數(shù)

901

87.6

90

18

902

87.6

100

1)在本次競賽中,902C級及以上的人數(shù)有多少?

2)請你將表格補充完整:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當今,青少年用電腦手機過多,視力水平下降已引起了全社會的關(guān)注,某校為了解八年級1000名學生的視力情況,從中抽查了150名學生的視力情況,通過數(shù)據(jù)處理,得到如下的頻數(shù)分布表.解答下列問題:

視力范圍分組

組中值

頻數(shù)

3.95≤x4.25

4.1

20

4.25≤x4.55

4.4

10

4.55≤x4.85

4.7

30

4.85≤x5.15

5.0

60

5.15≤x5.45

5.3

30

合計

150

1)分別指出參加抽測學生的視力的眾數(shù)、中位數(shù)所在的范圍;

2)若視力為4.85以上(含4.85)為正常,試估計該校八年級學生視力正常的人數(shù)約為多少?

3)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)相應(yīng)組中的權(quán).請你估計該校八年級學生的平均視力是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一座拱橋的截面輪廓為拋物線型(如圖1),拱高6,跨度20,相鄰兩支柱間的距離均為5.

1)將拋物線放在所給的直角坐標系中(如圖2所示),其表達式是的形式. 請根據(jù)所給的數(shù)據(jù)求出的值.

2)求支柱MN的長度.

3)拱橋下地平面是雙向行車道(正中間DE是一條寬2米的隔離帶),其中的一條行車道能否并排行駛寬2米、高3米的三輛汽車(汽車間的間隔忽略不計)?請說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮與小明做投骰子(質(zhì)地均勻的正方體)的實驗與游戲.

1)在實驗中他們共做了50次試驗,試驗結(jié)果如下:

朝上的點數(shù)

1

2

3

4

5

6

出現(xiàn)的次數(shù)

10

9

6

9

8

8

填空:此次實驗中,“1點朝上的頻率是

小亮說:根據(jù)試驗,出現(xiàn)1點朝上的概率最大.他的說法正確嗎?為什么?

2)小明也做了大量的同一試驗,并統(tǒng)計了“1點朝上的次數(shù),獲得的數(shù)據(jù)如下表:

試驗總次數(shù)

100

200

500

1000

2000

5000

10000

1點朝上的次數(shù)

18

34

82

168

330

835

1660

1點朝上的頻率

0.180

0.170

0.164

0.168

0.165

0.167

0.166

“1點朝上的概率的估計值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是中線,EAD的中點,過點AAFBCBE的延長線于F,連接CF

1)求證:ADAF;

2)如果ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE1,DE3,∠EFB′=60°,則矩形ABCD的面積是(  )

A.4B.8C.3D.4

查看答案和解析>>

同步練習冊答案