如圖,已知拋物線軸相交于A、B兩點,與軸相交于點C,若已知B點的坐標為B(8,0).

(1)求拋物線的解析式及其對稱軸方程;
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由;
(3)M為拋物線上BC之間的一點,N為線段BC上的一點,若MN∥軸,求MN的最大值;
(4)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

(1)拋物線的解析式為y=x2+x+4,對稱軸為直線x=3;
(2)△AOC∽△COB.理由見解析;
(3)4;
(4)Q1(3,4+),Q2(3,4-),Q3(3,0).

解析試題分析:
(1)把點B的坐標代入拋物線解析式求出b的值,即可得到拋物線解析式,再根據(jù)對稱軸方程列式計算即可得解;
(2)令y=0,解方程求出點A的坐標,令x=0求出y的值得到點C的坐標,再求出OA、OB、OC,然后根據(jù)對應邊成比例,夾角相等的兩個三角形相似證明;
(3)設直線BC的解析式為y=kx+b,利用待定系數(shù)法求出解析式,再表示出MN,然后根據(jù)二次函數(shù)的最值問題解答;
(4)利用勾股定理列式求出AC,過點C作CD⊥對稱軸于D,然后分①AC=CQ時,利用勾股定理列式求出DQ,分點Q在點D的上方和下方兩種情況求出點Q到x軸的距離,再寫出點的坐標即可;②點Q為對稱軸與x軸的交點時,AQ=CQ,再寫出點Q的坐標即可.
試題解析:
(1)∵點B(8,0)在拋物線y=x2+bx+4上,
×64+8b+4=0,
解得b=,
∴拋物線的解析式為y=x2+x+4,
對稱軸為直線x=;
(2)△AOC∽△COB.
理由如下:令y=0,則x2+x+4=0,
即x2-6x-16=0,
解得x1=-2,x2=8,
∴點A的坐標為(-2,0),
令x=0,則y=4,
∴點C的坐標為(0,4),
∴OA=2,OB=8,OC=4,
=2,∠AOC=∠COB=90°,
∴△AOC∽△COB;
(3)設直線BC的解析式為y=kx+b,

解得,
∴直線BC的解析式為y=x+4,
∵MN∥y軸,
∴MN=x2+x+4-(x+4),
=x2+x+4+x-4,
=x2+2x,
=(x-4)2+4,
∴當x=4時,MN的值最大,最大值為4;
(4)由勾股定理得,AC=,
過點C作CD⊥對稱軸于D,則CD=3,
①AC=CQ時,DQ=
點Q在點D的上方時,點Q到x軸的距離為4+,
此時點Q1(3,4+),
點Q在點D的下方時,點Q到x軸的距離為4-
此時點Q2(3,4-),
②點Q為對稱軸與x軸的交點時,AQ=5,
CQ=,
∴AQ=CQ,
此時,點Q3(3,0),
綜上所述,點Q的坐標為(3,4+)或(3,4-)或(3,0)時,△ACQ為等腰三角形時.
考點:二次函數(shù)綜合題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,拋物線的解析式是y=x2+1,點C的坐標為(-4,0),平行四邊形OABC的頂點A,B在拋物線上,AB與y軸交于點M,已知點Q(x,y)在拋物線上,點P(t,0)在x軸上.

(1)寫出點M的坐標;
(2)當四邊形CMQP是以MQ,PC為腰的梯形時;
①求t關于x的函數(shù)解析式和自變量x的取值范圍;
②當梯形CMQP的兩底的長度之比為1∶2時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某賓館有30個房間供游客住宿,當每個房間的房價為每天160元時,房間會全部住滿。當每個房間每天的房價每增加10元時,就會有一個房間空閑。賓館需對游客居住的每個房間每天支出20元的各種費用。根據(jù)規(guī)定,每個房間每天的房價不得高于260元。
設每個房間的房價每天增加x元(x為10的整數(shù)倍)。
(1)設一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關系式及自變量x的取值范圍;
(2)設賓館一天的利潤為w元,求w與x的函數(shù)關系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點D.

(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點,AB=10,tan∠CAD=
① 求拋物線的解析式;
② 判斷拋物線的頂點E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,已知點坐標為(2,4),直線x=2與軸相交于點,連結,拋物線y=x從點沿方向平移,與直線x=2交于點,頂點點時停止移動.

(1)求線段所在直線的函數(shù)解析式;
(2)設拋物線頂點的橫坐標為,
①用的代數(shù)式表示點的坐標;
②當為何值時,線段最短;
(3)當線段最短時,相應的拋物線上是否存在點,使△的面積與△的面積相等,若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應高于購進的價格;第二個月結束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉時單價為40元,設第二個月單價降低x元.
(1)填表:(不需化簡)

時間
 第一個月
第二個月
清倉時
 單價(元)
 80
 
 40
 銷售量(件)
 200
 
 
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

寧波元康水果市場某批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價一元,日銷售量將減少20千克.
(1)現(xiàn)要保證每天盈利6000元,同時又要讓顧客得到實惠,那么每千克應漲價多少元?
(2)若該批發(fā)商單純從經(jīng)濟角度看,那么每千克應漲價多少元,能使商場獲利最多.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,拋物線經(jīng)過A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圓,M為圓心。

⑴求拋物線的解析式;
⑵求陰影部分的面積;
⑶在正半軸上有一點P,作PQ⊥x軸交BC于Q,設PQ=K,△CPQ的面積為S,求S關于K的函數(shù)關系式,并求出S的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,拋物線與x軸交于A(1,0)、B(-4,0)兩點,交y軸與C點.

(1)求該拋物線的解析式.
(2)在該拋物線位于第二象限的部分上是否存在點D,使得△DBC的面積S最大?若存在,求出點D的坐標;若不存在,請說明理由.
(3)設拋物線的頂點為點F,連接線段CF,連接直線BC,請問能否在直線BC上找到一個點M,在拋物線上找到一個點N,使得C、F、M、N四點組成的四邊形為平行四邊形,若存在,請寫出點M和點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案