【題目】如圖,以△ABC的邊AB、AC為腰分別向外作等腰直角三角形ABD和等腰直角三角形ACE,連接DE.若M為BC中點(diǎn),MA延長線交DE于點(diǎn)H,
(1) 求證:AH⊥DE.
(2) 若DE=4,AH=3,求△ABM的面積
【答案】(1)見解析;(2)3
【解析】
(1)延長AM至點(diǎn)F,使MF=AM,連接BF,直接證明△AMC≌△FMB,然后通過角度轉(zhuǎn)換得到∠FBA=∠DAE,再證明FBA≌△EAD,即可求得∠AHE=90°;(2)DE=4,AH=3,求出S△ADE,從而得出S△ABC,M為BC的中點(diǎn),即可求得△ABM的面積.
(1)延長AM至點(diǎn)F,使MF=AM,連接BF,
∵M為BC的中點(diǎn),∠AMC=∠BMF,
在△AMC和△FMB中
∴△AMC≌△FMB(SAS)
∴∠BFM=∠MAC,∠FBM=∠MCA,BF=CA,
△ABD和△ACE都為等腰直角三角形,
∴∠DAE=180°-∠BAC,
∴∠FBA=∠DAE,
在△FBA和△EAD中
∴△FBA≌△EAD(SAS),
∴∠BFA=∠AED,
∵∠EAC=90°,
∴∠MAC+∠HAE=90°,
∴∠HAE+∠DEA=90°,
∴∠AHE=90°,
∴AH⊥DE;
(2)∵DE=4,AH=3,
∴S△ADE=3×4÷2=6,
∴S△FBA=6,即S△ABC=6,
∵M為BC的中點(diǎn),
∴S△ABM=3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線上依次擺放著七個正方形(如圖所示),已知斜放置的三個正方形的面積分別是1、2、3,正放置的四個正方形的面積依次是,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀材料,再結(jié)合要求回答問題.
【問題情景】
如圖①:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn),且線段BE,EF,FD滿足BE+FD=EF.試探究圖中∠EAF與∠BAD之間的數(shù)量關(guān)系.
【初步思考】
小王同學(xué)探究此問題的方法是:延長FD到G,使DG=BE,連結(jié)AG.
先證明△ABE≌△ADG,再證明△AEF≌△AGF,
可得出∠EAF與∠BAD之間的數(shù)量關(guān)系是 .
【探索延伸】
若將問題情景中條件“∠B=∠ADC=90°”改為“∠B+∠D=180°”(如圖②),其余條件不變,請判斷上述數(shù)量關(guān)系是否仍然成立,若成立,請證明;若不成立,請說明理由.
【實(shí)際應(yīng)用】
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn),1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處且相距210海里.試求此時兩艦艇的位置與指揮中心(O處)形成的夾角∠EOF的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;
(1)直接寫出圖中∠AOC的對頂角為 ,∠BOE的鄰補(bǔ)角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.
(1)請判斷 AB 與 CD 的位置關(guān)系,并說明理由;
(2)如圖 2,若∠E=90°且 AB 與 CD 的位置關(guān)系保持不變,當(dāng)直角頂點(diǎn) E 移動時,寫出∠BAE 與∠ECD 的數(shù)量關(guān)系,并說明理由;
(3)如圖 3,P 為線段 AC 上一定點(diǎn),點(diǎn) Q 為直線 CD 上一動點(diǎn),且 AB 與 CD 的位置 關(guān)系保持不變,當(dāng)點(diǎn) Q 在射線 CD 上運(yùn)動時(不與點(diǎn) C 重合),∠PQD,∠APQ 與∠ BAC 有何數(shù)量關(guān)系?寫出結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于t的不等式組恰有三個整數(shù)解,則關(guān)于x的一次函數(shù)y=x-a的圖象與反比例函數(shù)y=的圖象的公共點(diǎn)的個數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知小華家、小夏家、小紅家及學(xué)校在同一條大路旁,一天,他們放學(xué)后從學(xué)校出發(fā),先向南行1000m到達(dá)小華家A處,繼續(xù)向北行3000m到達(dá)小紅B家處,然后向南行6000m到小夏家C處.
(1)以學(xué)校以原點(diǎn),以向南方向為正方向,用1個單位長度表示1000m,請你在數(shù)軸上表示出小華家、小夏家、小紅家的位置;
(2)小紅家在學(xué)校什么位置?離學(xué)校有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具用品商店銷售A、B兩種款式文具盒,已知購進(jìn)1個A款文具盒比B款文具盒便宜5元,且用300元購入A款文具盒的數(shù)量比購入B款文具盒的數(shù)量多5個.
(1)購進(jìn)一個A款文具盒、一個B款文具盒各需多少元?
(2)若A款文具盒與B款文具盒的售價分別是20元和30元,現(xiàn)該文具用品商店計一劃用不超過1000元購入共計60個A、B兩種款式的文具盒,且全部售完,問如何安排進(jìn)貨才能使銷售利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com