(2012•十堰)如圖,直線BD∥EF,AE與BD交于點C,若∠ABC=30°,∠BAC=75°,則∠CEF的大小為(  )
分析:先根據(jù)三角形外角的性質(zhì)求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.
解答:解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,
∴∠1=∠ABC+∠BAC=30°+75°=105°,
∵直線BD∥EF,
∴∠CEF=∠1=105°.
故選D.
點評:本題考查的是平行線的性質(zhì)及三角形外角的性質(zhì),熟知兩直線平行,同位角相等是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3
3
;⑤S△AOC+S△AOB=6+
9
4
3
.其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖是某體育館內(nèi)的頒獎臺,其主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖,梯形ABCD中,AD∥BC,點M是AD的中點,且MB=MC,若AD=4,AB=6,BC=8,則梯形ABCD的周長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•十堰)如圖,矩形ABCD中,AB=2,AD=4,AC的垂直平分線EF交AD于點E、交BC于點F,則EF=
5
5

查看答案和解析>>

同步練習冊答案