【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b-<0的x的取值范圍;
(3)求△AOB的面積.
【答案】(1);(2)或;(2)
【解析】試題分析:(1)首先根據(jù)A(m,6),B(3,n)兩點(diǎn)在反比例函數(shù)y=(x>0)的圖象上,求出m,n的值各是多少;然后求出一次函數(shù)的解析式,再根據(jù)一元二次不等式的求法,求出x的取值范圍即可.
(2)由-2x+8-<0,求出x的取值范圍即可.
(3)首先分別求出C點(diǎn)、D點(diǎn)的坐標(biāo)的坐標(biāo)各是多少;然后根據(jù)三角形的面積的求法,求出△AOB的面積是多少即可.
試題解析:(1)∵A(m,6),B(3,n)兩點(diǎn)在反比例函數(shù)y=(x>0)的圖象上,
∴6=, ,
解得m=1,n=2,
∴A(1,6),B(3,2),
∵A(1,6),B(3,2)在一次函數(shù)y=kx+b的圖象上,
∴,
解得,
∴y=-2x+8.
(2)由-2x+8-<0,
解得0<x<1或x>3.
(3)當(dāng)x=0時(shí),
y=-2×0+8=8,
∴C點(diǎn)的坐標(biāo)是(0,8);
當(dāng)y=0時(shí),
0=-2x+8,
解得x=4,
∴D點(diǎn)的坐標(biāo)是(4,0);
∴S△AOB=×4×8-×8×1-×4×2=16-4-4=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD的對(duì)角線AC、BD交于點(diǎn)O,EF過(guò)點(diǎn)O且與BC、AD分別交于點(diǎn)E、F.試猜想線段AE、CF的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長(zhǎng)線上,則等式DE2=BD2+CE2還能成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為r,點(diǎn)O到直線l的距離為d,且|d﹣3|+(6﹣2r)2=0,則直線l與⊙O的位置關(guān)系是_____.(填“相切、相交、相離”中的一種)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個(gè)正方形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)長(zhǎng)方形的面積為210cm2,寬比長(zhǎng)少7cm.設(shè)它的寬為xcm,則可得方程()
A. 2(x+7)+2x=210 B. x+(x+7)=210 C. x(x-7)=210 D. x(x+7)=210
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com