【題目】如圖,在△ABC中,D是BC的中點,DE⊥AB,DF⊥AC,垂足分別是E,F(xiàn),且BE=CF.求證:
(1)AD是△ABC的角平分線;
(2)AE=AF.
【答案】
(1)證明:∵D是BC的中點,
∴BD=CD,
∵DE⊥AB,DF⊥AC,
∴△BED和△CFD都是直角三角形,
在Rt△BED與Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴DE=DF,
∴AD是△ABC的角平分線
(2)證明:∵Rt△BED≌Rt△CFD,
∴∠B=∠C,
∴AB=AC,
∵BE=CF,
∴AE=AF
【解析】(1)根據(jù)HL可證Rt△BED≌Rt△CFD,根據(jù)全等三角形的性質(zhì)可得DE=DF,再根據(jù)角平分線的判定即可求解;(2)根據(jù)全等三角形的性質(zhì)可得∠B=∠C,根據(jù)等角對等邊可得AB=AC,再根據(jù)線段的和差求解即可.
科目:初中數(shù)學 來源: 題型:
【題目】某汽車制造廠開發(fā)一款新式電動汽車,計劃一年生產(chǎn)安裝240輛.由于抽調(diào)不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓后上崗,也能獨立進行電動汽車的安裝.生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務,那么工廠有哪幾種新工人的招聘方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是( )
A.a>0 B.3是方程ax+bx+c=0的一個根
C.a+b+c=0 D.當x<1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程x2﹣4x+c=0有兩個相等的實數(shù)根,則常數(shù)c的值為( )
A.±4
B.4
C.±16
D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D,F(xiàn)在線段AB上,點E,G分別在線段BC和AC上,CD∥EF,∠1=∠2.
(1)判斷DG與BC的位置關系,并說明理由;
(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,試說明AB與CD有怎樣的位置關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=AB·AD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則∠DAB=_________.
(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?
圖1 圖2 圖3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com