【題目】()如圖,中,,是上任意一點,以點為中心,取旋轉(zhuǎn)角等于,把逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖形.
()如圖,等邊中,為邊上一點,在的延長線上,且.
求證:.
()已知:如圖,在中,,,為邊上一點,為延長線上一點,且,已知,.寫出求線段長的具體思路(即添加輔助線的方法,推導的具體步驟詳寫,其它的寫出關(guān)鍵步驟或結(jié)果即可),并給出最后結(jié)果.
【答案】()見解析;()見解析;()
【解析】
(1)根據(jù)要求作圖即可;
(2)延長BC至點F,使CF=BD,連結(jié)EF.易證△CEF為等邊三角形,得到EF=CF,∠F=60°,從而可證△ABD≌△DFE,即可得到結(jié)論.
(3)過點C作D′ M′⊥BC,并取CD′=CM′=BD=BM.連結(jié)DD′、MM′、DM′,得到DD′=DM′,∠D′ DC=∠M′ DC,由(1)(2)可得∠D′ DC=∠BAD=7.5°,故∠CDM′=7.5°,可證得△AMM′和△ADD′為等腰直角三角形,得到AD=AD′=1,AM=AM′,DD′==DM′,∠ADD′=45°,∠ADM′=45°+7.5°+7.5°=60°.過A作AE⊥DM′于點E,得到∠DAE=30°,由30°直角三角形的性質(zhì)得到DE,AE的長,進而得到EM′的長,由勾股定理即可得到結(jié)論.
()如圖,即為所求,
()延長至點,使,連結(jié).
∵為等邊三角形,
∴,
∴,
∴為等邊三角形.
∴.
∵,
∴,
又∵,
∴≌,
∴,得證.
()過點作,并取,
連結(jié)、、,
則,
由()()可得,
∴,
由,
可證得≌≌,
所以和為等腰直角三角形,
∴,
∴,
∴,
過作于點,
∴,
∴,
∴,
∴
.
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a,b,﹣b,c連接起來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一種密碼,將英文26個字舟a,b,c,…,z(不論大小寫)依次對應(yīng)1,2,3,…,26,這26個自然數(shù)(見表格),當明碼對應(yīng)的序號x為奇數(shù)時,密碼對應(yīng)的序號,當明碼對應(yīng)的序號x為偶數(shù)時,密碼對應(yīng)的序號+12,按下述規(guī)定,將明碼“l(fā)ove”譯成密碼是( )
A.loveB.rkwuC.sdriD.rewj
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開.
①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】西安市管理部門對“十一”國慶放假期間七天本市某景區(qū)客流變化量進行了不完全統(tǒng)計,數(shù)據(jù)如下(用正數(shù)表示客流量比前一天增加,用負數(shù)表示客流量比前一天下降):
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
變化(萬人) |
請通過計算解決以下問題:
(1)請判斷這7天中,哪一天人數(shù)最多?哪一天人數(shù)最少?
(2)與10月3日相比,10月5日的客流量是上升了還是下降了?
(3)如圖9月30日的客流量為1.5萬人,據(jù)統(tǒng)計平均每人每天消費200元,請問該景區(qū)在“十一”七天國慶假期的總收入為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機小張某天上午營運全是在東西走向的政府大道上進行的,如果規(guī)定向東為正,向西為負,他這天上午的行程是(單位:千米):+15,-3,+16,-11,+10,-12,+4,-15,+16,-18.
(1)將最后一名乘客送達目的地時,小張距上午出發(fā)點的距離是多少千米?在出發(fā)點的什么方向?
(2)若汽車耗油量為0.6升/千米,出車時,郵箱有油72.2升,若小張將最后一名乘客送達目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是( )
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點D,連接OD,AB=,∠CBO=45°,在直線BE上求點M,使△BMC與△ODC相似,則點M的坐標是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知⊙O是ΔADB的外接圓,∠ADB的平分線DC交AB于點M,交⊙O于點C,連接AC,BC.
(1)求證:AC=BC;
(2)如圖2,在圖1 的基礎(chǔ)上做⊙O的直徑CF交AB于點E,連接AF,過點A作⊙O的切線AH,若AH//BC,求∠ACF的度數(shù);
(3)在(2)的條件下,若ΔABD的面積為,ΔABD與ΔABC的面積比為2:9,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com