【題目】已知函數(shù)
(1)m= 時(shí),函數(shù)圖像與x軸只有一個(gè)交點(diǎn);
(2)m為何值時(shí),函數(shù)圖像與x軸沒有交點(diǎn);
(3)若函數(shù)圖像與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且△ABC的面積為4,求m的值.
【答案】(1) 或;(2) ;(3) .
【解析】試題分析:(1)分兩種情況進(jìn)行討論:①當(dāng)m-1=0時(shí),函數(shù)是一次函數(shù),圖象是直線,與x軸有一個(gè)交點(diǎn);②當(dāng)m-1≠0時(shí),函數(shù)是二次函數(shù),令根的判別式等于0,求出m的值,即可得到結(jié)果;
(2)令根的判別式小于0即可求出m的范圍;
(3)對于二次函數(shù)解析式,分別令x與y為0求出y與x的值,利用根與系數(shù)的關(guān)系求出兩個(gè)之和與兩根之積,表示出三角形ABC的面積,根據(jù)已知面積為4即可求出m的值.
試題解析:
解:(1)分兩種情況進(jìn)行討論:
①當(dāng)m-1=0,m=1時(shí),函數(shù)是一次函數(shù)y=2x,圖象是直線,與x軸有一個(gè)交點(diǎn);
②當(dāng)m-1≠0,m≠1時(shí),函數(shù)是二次函數(shù),
∵函數(shù)y=(m-1)x2+2mx+m-1圖象與x軸只有一個(gè)交點(diǎn),
∴△=4m2-4(m-1)2=4m2-4m2+8m-4=0,
解得:m=.
故答案為1或;
(2)∵函數(shù)與x軸沒有交點(diǎn),
∴△=4m2-4(m-1)2=4m2-4m2+8m-4<0,即m<;
(3)對于二次函y=(m-1)x2+2mx+m-1,
令x=0,得到y=m-1,即C(0,m-1),
令y=0,得到(m-1)x2+2mx+m-1=0,
設(shè)此方程的兩根為a,b,
∴由根與系數(shù)的關(guān)系得到a+b=, ab=1,
∴AB=|a-b|=== ,
∵△ABC的面積為4,
∴AByC縱坐標(biāo)=4,即|m-1|×=8,
兩邊平方得:4m2-4(m-1)2=64,即8m=68,
解得:m=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市開展一項(xiàng)自行車旅游活動(dòng),線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結(jié)果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的長AB為5,寬BC為4,E是BC邊上的一個(gè)動(dòng)點(diǎn),AE⊥EF,EF交CD于點(diǎn)F.設(shè)BE=x,F(xiàn)C=y,則點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),能表示y關(guān)于x的函數(shù)關(guān)系的大致圖象是( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,線段AD的垂直平分線分別交AB和AC于點(diǎn)E、F,連接DE、DF.
(1)試判定四邊形AEDF的形狀,并證明你的結(jié)論.
(2)若DE=13,EF=10,求AD的長.
(3)△ABC滿足什么條件時(shí),四邊形AEDF是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直線CM⊥BC,動(dòng)點(diǎn)D從點(diǎn)C開始沿射線CB方向以每秒3厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)E也同時(shí)從點(diǎn)C開始在直線CM上以每秒1厘米的速度向遠(yuǎn)離C點(diǎn)的方向運(yùn)動(dòng),連接AD、AE,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)請直接寫出CD、CE的長度(用含有t的代數(shù)式表示):CD= cm,CE= cm;
(2)當(dāng)t為多少時(shí),△ABD的面積為12 cm2?
(3)請利用備用圖探究,當(dāng)t為多少時(shí),△ABD≌△ACE?并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A、B、C、D在同一直線上,AB=CD,DE∥AF,若要使△ACF≌△DBE,則還需要補(bǔ)充一個(gè)條件:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直線CM⊥BC,動(dòng)點(diǎn)D從點(diǎn)C開始沿射線CB方向以每秒3厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)E也同時(shí)從點(diǎn)C開始在直線CM上以每秒1厘米的速度向遠(yuǎn)離C點(diǎn)的方向運(yùn)動(dòng),連接AD、AE,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)請直接寫出CD、CE的長度(用含有t的代數(shù)式表示):CD= cm,CE= cm;
(2)當(dāng)t為多少時(shí),△ABD的面積為12 cm2?
(3)請利用備用圖探究,當(dāng)t為多少時(shí),△ABD≌△ACE?并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用了隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.
請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為 .
(2)請補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若從對校園安全知識達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識競賽,請用畫樹狀圖或列表的方法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高2米的影子CE;而當(dāng)光線與地面夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13米的距離(B、F、C在一條直線上)
(1)求教學(xué)樓AB的高度;
(2)學(xué)校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com