【題目】如圖,已知數(shù)軸上的點A表示的數(shù)為6,點B表示的數(shù)為﹣4,點C到點A、點B的距離相等,動點P從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為x(x大于0)秒.
(1)點C表示的數(shù)是 ;
(2)當(dāng)x= 秒時,點P到達點A處?
(3)運動過程中點P表示的數(shù)是 (用含字母x的式子表示);
(4)當(dāng)P,C之間的距離為2個單位長度時,求x的值.
【答案】(1)1(2)當(dāng)x=5秒時,點P到達點A處(3)2x﹣4(4)當(dāng)x等于1.5或3.5秒時,P、C之間的距離為2個單位長度
【解析】
(1)根據(jù)題意得到點C是AB的中點;
(2)、(3)根據(jù)點P的運動路程和運動速度列出方程;
(4)分兩種情況:點P在點C的左邊有右邊.
(1)依題意得,點C是AB的中點,故點C表示的數(shù)是: =1.
故答案為:1;
(2)[6﹣(﹣4)]÷2=10÷2=5(秒)
答:當(dāng)x=5秒時,點P到達點A處.
(3)點P表示的數(shù)是2x﹣4.
故答案是:2x﹣4;
(4)當(dāng)點P在點C的左邊時,2x=3,則x=1.5;
當(dāng)點P在點C的右邊時,2x=7,則x=3.5.
綜上所述,當(dāng)x等于1.5或3.5秒時,P、C之間的距離為2個單位長度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC內(nèi)一點,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點,則四邊形EFGH的周長是( )
A. 7 B. 8 C. 11 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,E為BC上一點,過B作BG⊥AE于G,延長BG至點F使∠CFB=45°
(1)求證:AG=FG;
(2)如圖2延長FC、AE交于點M,連接DF、BM,若C為FM中點,BM=10,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A、B、C的坐標分別為(﹣1,0),(5,0),(0,2).若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P在移動的過程中,使△PBF成為直角三角形,則點F的坐標是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=2,AC=4.對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)α°,分別交直線BC、AD于點E、F.
(1)當(dāng)α= °,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)的過程中,從A、B、C、D、E、F中任意4個點為頂點構(gòu)造四邊形.
①α= °,構(gòu)造的四邊形是菱形;
②若構(gòu)造的四邊形是矩形,求出該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知矩形ABCD,E為AD邊上一動點,過A,B,E三點作⊙O,P為AB的中點,連接OP,
(1)求證:BE是⊙O的直徑且OP⊥AB;
(2)若AB=BC=8,AE=6,試判斷直線DC與⊙O的位置關(guān)系,并說明理由;
(3)如圖2,若AB=10,BC=8,⊙O與DC邊相交于H,I兩點,連結(jié)BH,當(dāng)∠ABE=∠CBH時,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200元/時,其他主要參考數(shù)據(jù)如下:
運輸工具 | 途中平均速度 (千米/時) | 運費 (元/千米) | 裝卸費用 (元) |
火車 | 100 | 15 | 2000 |
汽車 | 80 | 20 | 900 |
(1)如果選擇汽車的總費用比選擇火車的總費用多1100元,那么你知道本市與A市之間的路程是多少千米嗎?請你列方程解答;
(2)若A市與某市之間的路程為s千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,要想將這批水果運往該市進行銷售,則當(dāng)s為多少時,選擇火車和汽車運輸所需費用相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有三個內(nèi)角相等凸四邊形叫三等角四邊形.
(1)三等角四邊形ABCD中,∠A=∠B=∠C,求∠A的取值范圍;
(2)如圖,折疊平行四邊形紙片DEBF,使頂點E,F(xiàn)分別落在邊BE,BF上的點A,C處,折痕分別為DG,DH.求證:四邊形ABCD是三等角四邊形.
(3)三等角四邊形ABCD中,∠A=∠B=∠C<90°,若CB=CD=4,則當(dāng)AD的長為何值時,AB的長最大,其最大值是多少?(作圖解答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com