【題目】拋物線上部分點的橫坐標,縱坐標的對應(yīng)值如下表:

-3

-2

-1

0

1

0

4

3

0

(1)把表格填寫完整;

(2)根據(jù)上表填空:

①拋物線與軸的交點坐標是__________________;

②在對稱軸右側(cè),增大而_______________;

③當(dāng)時,則的取值范圍是_________________

(3)請直接寫出拋物線的解析式.

【答案】13;(2)①拋物線與軸的交點坐標是;②增大而減。虎的取值范圍是;(3

【解析】

1)利用表中對應(yīng)值的特征和拋物線的對稱性得到拋物線的對稱軸為直線x=-1,則x=0x=-2時,y的值相等,都為3;
2)①利用表中y=0x的值可得到拋物線與x軸的交點坐標;
②設(shè)交點式y=ax+3)(x-1),再把(0,3)代入求出a得到拋物線解析式為y=-x2-2x+3,則可判斷拋物線的頂點坐標為(-1,4),拋物線開口向下,然后根據(jù)二次函數(shù)的性質(zhì)解決問題;③由于x=-2時,y=3;當(dāng)x=2時,y=-5,結(jié)合二次函數(shù)的性質(zhì)可確定y的取值范圍;
3)由(2)得拋物線解析式.

解:(1)∵x=-3,y=0x=1,y=0
∴拋物線的對稱軸為直線x=-1,
x=0x=-2時,y=3;

故答案是:3;
2)①∵x=-3y=0;x=1y=0,

∴拋物線與x軸的交點坐標是(-30)和(1,0);

故答案是:(-3,0)和(10);
②設(shè)拋物線解析式為y=ax+3)(x-1),
把(0,3)代入得3=-3a,解得a=-1,
∴拋物線解析式為y=-x+3)(x-1),即y=-x2-2x+3,
拋物線的頂點坐標為(-14),拋物線開口向下,
∴在對稱軸右側(cè),yx增大而減;

故答案是:減;
③當(dāng)x=-2時,y=3;當(dāng)x=2時,y=-4-4+3=-5,當(dāng)x=-1,y有最大值為4
∴當(dāng)-2x2時,則y的取值范圍是-5y≤4

故答案是:-5y≤4
3)由(2)得拋物線解析式為y=-x2-2x+3,
故答案是:y=-x2-2x+3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A90°AB20cm,AC15cm,在這個直角三角形內(nèi)有一個內(nèi)接正方形,正方形的一邊FGBC上,另兩個頂點E、H分別在邊AB、AC上.

1)求BC邊上的高;

2)求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標為( 。

A.,0B.2,0C.,0D.3,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】游泳是一項深受青少年喜愛的體育運動,某中學(xué)為了加強學(xué)生的游泳安全意識,組織學(xué)生觀看了紀實片孩子,請不要私自下水”,并于觀看后在本校的名學(xué)生中作了抽樣調(diào)查.制作了下面兩個不完整的統(tǒng)計圖.請根據(jù)這兩個統(tǒng)計圖回答以下問題:

(I)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

(2)補全兩個統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果估算該校名學(xué)生中大約有多少人結(jié)伴時會下河學(xué)游泳”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過原點,且與軸交于點

1)求拋物線的解析式及頂點的坐標;

2)已知為拋物線上一點,連接,,求的值;

3)在第一象限的拋物線上是否存在一點,過點軸于點,使以,,三點為頂點的三角形與相似,若存在,求出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,邊長為1,∠A60,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,,則四邊形A2019B2019C2019D2019的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點EBC上,連接AE,將ABE沿著AE翻折到AEF,連接CF、DF,若CDF為等腰三角形,則CDF的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是二次函數(shù)yax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(30),下列說法:①abc0;②2ab0;③若(5y1),(3,y2)是拋物線上兩點,則y1y2;④4a+2b+c0,其中說法正確的( 。

A.①②B.①②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)黨和國家精準扶貧戰(zhàn)略計劃,某公司在農(nóng)村租用了 720畝閑置土地種植了喬 木型、小喬木型和灌木型三種茶樹. 為達到最佳種植收益,要求種植喬木型茶樹的面積是小喬木型茶樹面積的2倍,灌木型茶樹的面積不得超過喬木型茶樹面積的倍,但種植喬木型茶樹的面積不得超過270. 到茶葉采摘季節(jié)時,該公司聘請當(dāng)?shù)剞r(nóng)民進行采摘,每人每天可以采摘0.4畝喬木型茶葉,或者采摘0.5畝小喬木型茶葉,或者采摘0.6畝灌木型茶葉. 若該公司聘請一批農(nóng)民恰好20天能采摘完所有茶葉,則種植喬木型茶樹的面積是________.

查看答案和解析>>

同步練習(xí)冊答案