【題目】用適當(dāng)方法解下列方程:
①x2﹣2x=99
②x2+8x=﹣16
③x2+3x+1=0
④5x(x+2)=4x+8.
【答案】①x1=11,x2=﹣9;②x1=x2=﹣4;③x1=,x2=;④x1=﹣2,x2= .
【解析】
】①移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可;
②移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可;
③求出b2-4ac的值,再代入公式求出即可;
④移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.
解:①x2﹣2x=99,
x2﹣2x﹣99=0,
(x﹣11)(x+9)=0,
x﹣11=0,x+9=0,
x1=11,x2=﹣9;
②x2+8x=﹣16,
x2+8x+16=0,
(x+4)2=0,
x+4=0,
x=﹣4,
即x1=x2=﹣4;
③x2+3x+1=0,
b2﹣4ac=32﹣4×1×1=5,
x=,
x1=,x2=;
④5x(x+2)=4x+8
5x(x+2)﹣4(x+2)=0,
(x+2)(5x﹣4)=0,
x+2=0,5x﹣4=0,
x1=﹣2,x2=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;
(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點A(0,2),B(2,2),拋物線F:y=x2﹣2mx+m2﹣2.
(1)求拋物線F的頂點坐標(biāo)(用含m的式子表示);
(2)當(dāng)拋物線F與線段AB有公共點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在菱形ABCD中,動點P從點B出發(fā),沿折線B→C→D→B運動.設(shè)點P經(jīng)過的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( )
A. B. C. 5D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.
(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?
(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應(yīng)如何安排車輛最節(jié)省費用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)(x+1) 2-3 (x +1)+2=0 (2) (3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某集團(tuán)公司為適應(yīng)市場競爭,趕超世界先進(jìn)水平,每年將銷售總額的8%作為新產(chǎn)品開發(fā)研究資金,該集團(tuán)2000年投入新產(chǎn)品開發(fā)研究資金為4000萬元,2002年銷售總額為7.2億元,求該集團(tuán)2000年到2002年的年銷售總額的平均增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M、N是邊長為6的正方形ABCD的邊CD上的兩個動點,滿足AM=BN,連接AC交BN于點E,連接DE交AM于點F,連接CF.
(1)求證:DE=BE;
(2)判斷DE與AM的位置關(guān)系,并證明;
(3)判斷線段CF是否存在最小值?若存在,求出來,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=60°,半徑為2的⊙M與邊OA、OB相切,若將⊙M水平向左平移,當(dāng)⊙M與邊OA相交時,設(shè)交點為E和F,且EF=6,則平移的距離為( )
A. 2 B. 2或6 C. 4或6 D. 1或5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com