如圖正方形ABCD中,E為AD邊上的中點(diǎn),過(guò)A作AF⊥BE,交CD邊于F.求證:點(diǎn)F是CD邊的中點(diǎn).
證明:∵∠ABE+∠AEB=90°,∠DAF+∠AEB=90°,
∴∠ABE=∠DAF
在△ABE和△DAF中,
∠ABE=∠DAF
∠FDA=∠EAB
AB=DA
,
∴△ABE≌△DAF,
∴DF=AE,
∵E為AD中點(diǎn),
∴F為CD中點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形OABC的邊長(zhǎng)為1,點(diǎn)P在AB上,∠AOP=30°,OP的延長(zhǎng)線交CB的延長(zhǎng)線于點(diǎn)Q,求PA和BQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)G是正方形ABCD對(duì)角線CA的延長(zhǎng)線上任意一點(diǎn),以線段AG為邊作一個(gè)正方形AEFG,線段EB和GD相交于點(diǎn)H.
(1)求證:EB=GD;
(2)判斷EB與GD的位置關(guān)系,并說(shuō)明理由;
(3)若AB=2,AG=
2
,求EB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PE⊥BC,PF⊥CD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個(gè)結(jié)論:①AP=EF;②∠PFE=∠BAP;③PD=
2
EC;④△APD一定是等腰三角形.其中正確的結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長(zhǎng)為6,E為CD邊上一點(diǎn),E′為CB延長(zhǎng)線上一點(diǎn),BE′=DE=1.連接EE′,則EE′的長(zhǎng)等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知正方形ABCD,將一個(gè)45度角∝的頂點(diǎn)放在D點(diǎn)并繞D點(diǎn)旋轉(zhuǎn),角的兩邊分別交AB邊和BC邊于點(diǎn)E和F,連接EF.求證:EF=AE+CF
(1)小明是這樣思考的:延長(zhǎng)BC到G,使得CG=AE,連接DG,先證△DAE≌△DCG,再證△DEF≌△DGF,請(qǐng)你借助圖2,按照小明的思路,寫(xiě)出完整的證明思路.
(2)劉老師看到這條題目后,問(wèn)了小明兩個(gè)小問(wèn)題:①如果正方形的邊長(zhǎng)和△BEF的面積都等于6,求EF的長(zhǎng)②將角∝繞D點(diǎn)繼續(xù)旋轉(zhuǎn),使得角∝的兩邊分別和AB邊延長(zhǎng)線、BC邊的延長(zhǎng)線交于E和F,如圖3所示,猜想EF、AE、CF三線段之間的數(shù)量關(guān)系并給予證明.請(qǐng)你幫忙解決.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,l1、l2、l3、l4是同一平面內(nèi)的四條平行直線,且每相鄰的兩條平行直線間的距離為h,面積是25的正方形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,那么h的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示的方格紙中,每個(gè)方格都是邊長(zhǎng)為1的正方形,點(diǎn)A是方格紙中的一個(gè)格點(diǎn)(小正方形的頂點(diǎn)).在這個(gè)5×5的方格紙中,以A為其中一個(gè)頂點(diǎn),面積等于
5
2
的格點(diǎn)等腰直角三角形(三角形的三個(gè)頂點(diǎn)都是格點(diǎn))的個(gè)數(shù)為(  )
A.10個(gè)B.12個(gè)C.14個(gè)D.16個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)正方形的對(duì)角線長(zhǎng)為4,則此正方形的面積為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案