【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于A(m,2m),B兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)求出點(diǎn)B的坐標(biāo),并根據(jù)圖象直接寫出滿足不等式的x的取值范圍.
【答案】(1)y=3x-1;(2)或x>1.
【解析】
(1)把A(m,2m)代入,求得A的坐標(biāo)為(1,2),然后代入一次函數(shù)y=kx-1中即可得出其解析式;
(2)聯(lián)立方程求得交點(diǎn)B的坐標(biāo),然后根據(jù)函數(shù)圖象即可得出結(jié)論.
(1)∵A(m,2m)在反比例函數(shù)圖象上,∴,∴m=1,∴A(1,2).
又∵A(1,2)在一次函數(shù)y=kx-1的圖象上,∴2=k-1,即k=3,
∴一次函數(shù)的表達(dá)式為:y=3x-1.
(2)由解得B(,-3)
∴由圖象知滿足的x取值范圍為或x>1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動(dòng)車從甲地開(kāi)往乙地,一列普通列車從乙地開(kāi)往甲地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關(guān)系,下列說(shuō)法:
①甲、乙兩地相距1800千米;
②點(diǎn)B的實(shí)際意義是兩車出發(fā)后4小時(shí)相遇;
③m=6,n=900;
④動(dòng)車的速度是450千米/小時(shí).
其中不正確的是( 。
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)F在DE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,菱形ABCD的周長(zhǎng)為20cm,對(duì)角線AC=8cm,直線l從點(diǎn)A出發(fā),以1cm/s的速度沿AC向右運(yùn)動(dòng),直到過(guò)點(diǎn)C為止在運(yùn)動(dòng)過(guò)程中,直線l始終垂直于AC,若平移過(guò)程中直線l掃過(guò)的面積為S(cm2),直線l的運(yùn)動(dòng)時(shí)間為t(s),則下列最能反映S與t之間函數(shù)關(guān)系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是⊙O的直徑,BC是弦,四邊形OBCD是平行四邊形,AC與OB相交于點(diǎn)P,給出下列結(jié)論:①AC⊥CD;②∠CAD=30°;③OB⊥AC;④CD=2OP.其中正確的個(gè)數(shù)為( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,線段OB的長(zhǎng)是方程x2﹣2x﹣8=0的解,tan∠BAO=.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)E在y軸負(fù)半軸上,直線EC交線段AB于點(diǎn)C,交x軸于點(diǎn)D.若C點(diǎn)坐標(biāo)為(-6.m),求:直線AB的表達(dá)式和經(jīng)過(guò)點(diǎn)C得反比例函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點(diǎn)”:如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點(diǎn)”.解決問(wèn)題:
(1)如圖1,∠A=∠B=∠DEC=45°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖2,在矩形ABCD中,A、B、C、D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖②中畫出矩形ABCD的邊AB上的強(qiáng)相似點(diǎn);
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處,若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AO平分∠BAC,交BC于點(diǎn)O.以O為圓心,OC為半徑作⊙O,分別交AO,BC于點(diǎn)E,F.
(1)求證:AB是⊙O的切線;
(2)延長(zhǎng)AO交⊙O于點(diǎn)D,連接CD,若AD=2AC,求tanD的值;
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)(-2,-1),(1,1)兩點(diǎn),則下列關(guān)于此二次函數(shù)的說(shuō)法正確的是【 】
A.y的最大值小于0 B.當(dāng)x=0時(shí),y的值大于1
C.當(dāng)x=-1時(shí),y的值大于1 D.當(dāng)x=-3時(shí),y的值小于0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com